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Abstract 

The complexity of real-time embedded 
systems is increasing in particular due to the 
use of distributed system architectures for 
their implementation. Notations to describe 
these software intensive distributed computer 
systems at the system-level are at best still in 
their infancy. An extension to the Vienna 
Development Method (VDM) is proposed to 
address the problem of analyzing deployment 
of software on distributed hardware. 

The extension enables the description of 
systems rather than just software. The 
language contains primitives for describing 
concurrent thread-based software components 
that are explicitly deployed on one or more 
processors which in turn are interconnected by 
one or more networks.  

The value of this modelling approach is 
illustrated using a case study for a missile 
counter measures system. We describe 
different alternative distributed architectures 
and we explore the projected timing properties 
for given scenarios of missile attacks.  

Introduction 

The early stages of the development of a 
new system are typically extremely volatile 
because there are still many unknowns in the 
requirements and there are many proposed 

implementation strategies. Key decisions need 
to be taken by the system architect, while 
often working under extreme time pressure. 
Dealing with these different dimensions of 
uncertainty and at the same time reducing 
project and product risks while increasing the 
confidence in the design, makes system 
architecting a very challenging task. The 
system architect needs to bridge the gap 
between the disciplines and deal with the 
design complexity in a very cost-effective way.  

The approach advocated in this paper aims 
to bridge at least a part of this gap, such that 
potential bottlenecks of a given system 
architecture can be discovered very early in 
the system design in a cost-effective fashion. 
Such bottlenecks might be networks with too 
small a capacity for the communication load 
in a given scenario or operations executed on 
processors that would be too slow compared 
to the given timing requirements. The overall 
idea is to create an abstract model of the 
system under development using an 
unambiguous formal notation that can be used 
for both describing the intended behaviour of 
the system as well as the deployment of 
software onto a hardware architecture. Tool 
support then enables simulation of abstract 
models of different scenarios and allows 
visualisation of the execution traces and 
examination of system level timing properties. 

The paper first explains the VDM++ 
technology used for expressing the abstract 
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system models and the capability to exercise 
these models. This is followed by a case study 
inspired from the design of an aircraft missile 
counter measures system. We explore the 
design space by changing the abstract system 
model based on “what-if” design scenarios, 
while constantly evaluating the requirements. 
The feedback and experiences gained from 
this exercise allow us to support the 
architectural design of such a system. Finally 
a few concluding remarks and future work are 
provided. 

The VDM++ Technology 

VDM++ is an object-oriented and model-
based specification language with a formally 
defined syntax, static and dynamic semantics. 
It is largely a superset of the ISO standardized 
notation VDM-SL (Andrews et al 1996). 
Different VDM dialects are supported by 
industry strength tools, called VDMTools, 
which are currently owned and further 
developed by CSK Systems1. In VDM++, a 
model consists of a collection of class 
specifications. If you are not familiar with 
VDM++ an overview of the language is 
provided on the VDM portal2. 

A timed extension to VDM++, simulating 
a multi-threaded single processor model of 
computation, was delivered as part of the 
VICE project: "VDM++ In a Constrained 
Environment'' (Mukherjee et al 2000). 
Recently, a number of extensions have been 
proposed to VDM++ in order to make the 
language more suitable to describe and 
analyse real-time embedded and distributed 
systems (Verhoef et al 2006). This paper is an 
application of those new extensions. It is 
important to note that this enables a 
description of the computational burden of 
functionality using a duration and a cycles 
keyword. 

                                                 
1 http://www.vdmtools.jp/en.  
2 http://www.vdmportal.org. 

Typically, techniques like VDM are used 
to formally verify important properties of an 
abstract model of a system. However, in this 
work, we have a totally different focus. Here, 
we use this technology to produce an abstract 
model at a system architectural level and 
apply a simulator to investigate the properties 
of the model, with the aim to evaluate design 
alternatives rather than prove correctness. For 
example, we want to play “what-if” scenarios 
that can give a system architect valuable 
feedback at the very early stages of 
development of a new system.  

The Counter Measures System 

The application used as a case study for 
this paper is the controller for a Counter 
Measures (CM) system on a military aircraft. 
Such a system takes information from several 
sensors concerning threats and sends 
commands to actuators which releases flares 
intended to distract the incoming missile. A 
potential system architecture can be seen in 
Figure 1. 

 
Figure 1: Physical layout CM system 

 
Flares of different types are released in a 

timed sequence, the number of flares released 
and the delay between the releases depending 
on the type of threat and its angle of incidence 
with the missile. The threat sensors relay the 
ID of the threat to the controller. For each 
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different kind of threat and the angle of the 
missile the controller must then derive a plan 
of how to deal with the given threat by firing a 
sequence of flares with a given pattern with a 
given flare dispenser dealing with the given 
angle. Such a pattern contains the number of 
flares to be fired and the delay between each 
firing. The task communicates the stated 
number of firings to the flare release hardware 
with the specified delay between each flare 
launch. All around the  aircraft, different flare 
dispensers are located dealing with threats 
arriving from different angles. The following 
requirements apply to this system: 
 

Priority handling : If a new threat is 
sensed (in the same angle area where a threat 
is currently being dealt with), the system 
should check the priority of the more recent 
threat. In case the priority of the new threat is 
greater than the previous one, execution of the 
current firing sequence should be aborted. 
Computation of the new firing sequence shall 
then take place instead. 

Parallel handling: If different threats are 
sensed with angles that are treated by different 
flare dispensers then the corresponding firing 
sequences shall be performed in parallel. 

Reaction time : The controller shall send 
the first flare release command within 250 
milliseconds of receiving threat information 
from the sensor. 

Abort time : The controller shall be able to 
abort a firing sequence within 130 milli-
seconds. 

A guideline to a systematic process 
explaining the logical steps that can be 
followed to produce an overall system model 
for this Counter Measures system is presented 
in (CSK Systems 2006). The system can be 
composed out of a number of available 
hardware components typically delivered as 
subsystems (sensors and flare dispensers) that 
can be organised in some physical layout. In 
this paper, we will focus on one of the 

proposed layouts (as shown in Figure 1) and 
study some architectural alternatives. 
 
We assume  in a 2-dimentional setting (for 
simplification reasons): 
• four sensor subsystems are available, each 

covering 90 degrees of viewing angle; 
• one missile detector subsystem; 
• three flare controller subsystem, each 

covering 120 degrees of release angle, 
each controlling four flare dispensers; 

• twelve flare dispenser subsystems coping 
with 30 degrees of release angle each.  

 
In the VDM++ model, this will be the 

initial configuration considered. We will 
illustrate how easy it is to change to a different 
number of components and their allocation to 
processors. 

In practice, requirements changes occur 
constantly in the  development of computer  
based systems. For  example, there are 
typically alternative suppliers for each 
subsystem. It is possible to incorporate the 
assumptions with respect to the functionality 
and the performance of these subsystems , in 
the VDM++ model shown in this paper. This 
means in practice that alternative choices can 
be explored as well as predicting the 
consequences of requirement changes. 

In the same way redundancy can be built 
into the system architecture such that the fault 
tolerance of the system architecture can be 
evaluated.  This approach supports the gradual 
introduction of redundancy in the design 
based on dependability and safety analysis of 
the envisaged system. For example using the 
Scalable Redundancy Approach (Ahlström et 
al 2001) for moving from a non-redundant 
design to a redundant design. Naturally the 
flexibility of allocating tasks to processors 
may be limited by physical requirements to 
the layout of the system and that needs to be 
taken into account. 
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Figure 2: UML class diagram of the Counter Measure case study

The CM System 

The overall VDM++ model for the CM 
case study is presented as a UML class 
diagram in Figure 2. This figure shows the 
world, the environment and the application 
model which all will be explained below in 
turn. For space limitations, we will limit the 
description of the model to those parts that 
introduce the VDM constructs that are used to 
describe the system architecture.  

Initially, an attempt was made to analyse 
the system performance if all functionality 
was carried out on a single CPU. As was to be 
expected, this simple system architecture did 
not live up to the timing requirements.  

Instead we describe a more suitable 
distributed architecture here, consisting of six 
processing units and three networks. The 
connection between these components can be 
seen in Figure 3, which reflects the physical 
lay-out shown in Figure 1.  The Sx’s and the 
FD’s in Figure 3 are meant to indicate how 

functionality is deployed to the different 
processors (see about deployment below). 

 

 
Figure 3: Connection between the CPUs 

 
Objects in the VDM++ model are created 

inside the so-called system class, as shown 
on the next page. Six CPU and three BUS 
instances are declared. Two parameters are 
used to specify the scheduling policy and the 
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capacity respectively. In this example, the 
policies are “First Come First Served” (FCFS) 
and “Fixed Priority” (FP). 
 
system CM 
 
instance variables 
  cpu1 :CPU := new CPU(<FCFS>,1E6); 
  cpu2 :CPU := new CPU(<FCFS>,1E6); 
  cpu3 :CPU := new CPU(<FP>,1E9); 
  cpu4 :CPU := new CPU(<FCFS>,1E6); 
  cpu5 :CPU := new CPU(<FCFS>,1E6); 
  cpu6 :CPU := new CPU(<FCFS>,1E6); 
  bus1 :BUS := new BUS(<FCFS>,1E6, 
              {cpu1,cpu3}); 
  bus2 :BUS := new BUS(<FCFS>,1E6, 
              {cpu2,cpu3}); 
  bus3 :BUS := new BUS(<FCFS>,1E6, 
              {cpu3,cpu4,cpu5,cpu6}); 

 
The BUS class has similar parameters but 

they also have a parameter indicating the 
topology of the network, by listing the set of 
CPUs it is connecting. Each of the system 
components is declared as follows: 
instance variables 
  public static detector : 
    MissileDetector := 
      new MissileDetector(); 
 
  public static sensor0 : 
    Sensor := new Sensor(0); 
   … 3 more sensors are created 
 
  public static controller0 : 
    FlareController :=  
      new FlareController(0); 
   … 2 more flare controllers are created 
 
  public static dispenser0 : 
    FlareDispenser := 
      new FlareDispenser(0); 
   … 11 more flare dispensers are created 

 
 Instances of these system components are 

then deployed to different CPUs as follows: 
public CM: () ==> CM 
CM () == 
 ( cpu1.deploy(sensor0); 
   cpu1.deploy(sensor1); 
   cpu2.deploy(sensor2); 
   cpu2.deploy(sensor3); 
   cpu3.deploy(detector); 

   cpu3.deploy(controller0); 
   … 2 additional deployments to cpu3   
   cpu4.deploy(dispenser0); 
   … 3 additional deployments to cpu4 
   cpu5.deploy(dispenser4); 
   … 3 additional deployments to cpu5 
   cpu6.deploy(dispenser8); 
   … 3 additional deployments to cpu6  )  
 
end CM 

The allocation of two of the sensors is 
made to the first two CPUs (as shown in Figure 
3), whereas both the missile detectors as well 
as all three controllers are allocated to 
processor cpu3. Four dispensers are allocated 
to each of the remaining CPUs. For the CPUs 
that use fixed priority scheduling, the priority 
of the operations executed on that CPU is 
defined in a similar fashion. Note that if we 
want to experiment with an alte rnative sys tem 
architecture or an alternative deployment of  
task to processor s the only changes necessary 
are here. 

The remaining part of the model describes 
the functionality of the environment and the 
system components and that is independent of 
the architectural aspects. This improves the 
maintainability of the model. 

The World Class. This top-level class is  
by convention used to set up the overall model 
consisting of both the system components and 
the environment surrounding the system. For 
example to determine which missile generated 
by the environment model is recognized by 
which sensor from the system model etc. In 
addition, it provides a top-level Run operation 
that starts up the system model and the 
environment model, initiates the scenario, 
finds out when the scenario is finished and 
finally shows the results (the output). 
The Environment Class. This class reads in 
the input the user wishes to simulate and the 
times at which input shall appear. It has a 
periodic thread that creates stimuli to the 
system using the createSignal operation as 
shown in Figure 4.  
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private createSignal: () ==> () 
createSignal () == 
  duration (10)  
  (if len inlines > 0 
   then (dcl curtime : nat := time, done : bool := false; 
         while not done do 
           def mk_ (eventid, pmt, pa, pt) = hd inlines in 
             if pt <= curtime 
             then (for all id in set dom ranges do 
                     def mk_(papplhs,pappsize) = ranges(id) in 
                       if canObserve(pa,papplhs,pappsize) 
                       then sensors(id).trip(eventid,pmt,pa); 
                   inlines := tl inlines; 
                   done := len inlines = 0; 
                   evid := eventid ) 
             else (done := true; 
                   evid := nil)) 
   else (busy := false; 
         evid := nil)); 
 

Figure 4: The createSignal opration from the Environment class 

 
The environment model awaits the system 

reaction using the operation handleEvent. 
Timing requirements can easily be stated as a 
post-condition to the handleEvent operation 
by calculating the time delay between each 
stimulus and response pair. 

The application model. The system is 
composed essentially of four different classes 
with a small common superclass GLOBAL that 
contains  a number of common definitions. The 
classes are Sensor,  MissileDetector, 
FlareController and FlareDispenser 
respectively. These classes correspond to the 
four kinds of system components that are 
included in the system description above. The 
sensors simply pass on any information that 
has been sensed immediately to the missile 
detector. The missile detector has a periodic 
thread that inspects whether any new threats 
have been sensed, and if so relays the relevant 
information to the flare controller respons ible 
for the sensed area. In turn, the flare controller 
has a periodic thread that inspects whether any 
new threats have arrived from the detector and 
if so relays the informa tion to the right flare 
dispenser, if the current handling of flares 

dispensed needs to be affected because of this 
new arrival. Finally the flare dispensers have a 
periodic thread that inspects whether any new 
threats have arrived and if so interrupts the 
current sequence of flares being dispensed.  
When flares are released this is signalled to 
the Environment using the handleEvent 
operation. There, we check whether or not the 
first flare was released on time, for example. 

Overall. The size of the full model of the 
CM system is less than 600 lines (including 
blank lines and comment lines) and about 100 
of these lines are dedicated to the CM class of 
which extracts have been shown above.  

Evaluating the CM Architecture 

Since the model of the CM system as a 
whole can be executed by the interpreter from 
VDMTools, it is possible to experiment with 
different scenarios (or system-level test cases) 
at this point, to evaluate the architecture the 
model represents. For the given model this is 
done by creating a file with the time stamped 
events that constitute stimuli that we would 
like to simulate from the environment, and 
then interpreting the model by executing the 
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top-level Run operation in the World class. 
An input file could for example look like this: 

 
[ mk_(1,<MissileA>,45,10000), 
  mk_(2,<MissileB>,270,30000)] 
 

which would simulate the appearance of two 
missiles at angle 45 and 270 degrees 
respectively arriving at 10000 and 30000 time 
units respectively. Any number of such 
scenarios can be executed. In case potential 
bottlenecks are found in such a scenario, the 
user needs to decide whether it is acceptable 
or the architecture needs to be adjusted. In the 
original model, all of the CPUs were given a 
capacity of 10E6 cycles per time unit. It 
turned out that cpu3 was a bottleneck in 
reaching the timing requirements and thus a 
CPU with a higher capacity was chosen and as 
a consequence the timing requirements could 
now be met. This is an example of the kind of 
adjustments that can be made at the system 
level, without changing the application model. 
This can be done by adjusting the capacity of 
the CPU or the BUS involved with the given 
bottleneck. Updates could also easily be made 
by changing the allocation of the system 
component instances to different CPUs. Both 
of these kinds of changes are made by 
adjusting parameters of the appropriate 
hardware component in the CM system and 
then running all the scenarios again. 
Alternatively, the overall system architecture 
can be adjusted by changing the number of 
system components, for example adding flare 
dispensers. This is also done in the CM system 
class, but it may also be possible that it is 
necessary to make minor adjustments in the 
World class. In any case, these adjustments 

are extremely fast to make and to explore the 
behaviour of selected scenarios. 

Visualizing CM Traces 

When a simple scenario, such as the one 
shown on the left, is executed, the interpreter 
of VDMTools produces a file where every 
internal event is logged along with a time 
stamp and an indication of the place in the 
model where it appeared. For example, 
whenever an operation is requested, activated 
or completed. In the same way, events are 
logged whenever a message is handled on the 
bus. Thread events such as creating, swapping 
in and out and termination of threads. 

This detailed logging also enables 
validation of important timing requirements. 
After the simulation run, it is possible to 
visualize such traces and in this way get a 
much better impression of the load of the 
different CPUs and BUSes with the given 
scenario.  

The log files produced by the VDMTools 
interpreter can be visua lized on top of the 
Eclipse platform (Eclipse 2006) using the 
showtrace plug-in, which is a part of the 
Overture tool set (Overture 2006). Once such 
a log file has been read, it is able to visualize 
the execution in terms of overviews of the 
CPUs and BUSes as show in Figure 5 and 
detailed for a specific CPU as shown in Figure 
6. Note that  it is possible to see both how busy 
the different components are as well as the 
details for when each thread is swapped in and 
out in the given scenario. We imagine that it 
will be possible some time in the future to 
visualize violations of timing requirements 
directly at views such as these. 
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Figure 5: Graphical overview of the system activity at the arrival of the second missile 

 

 
Figure 6: Detailed execution trace of cpu2 where sensor 8 is triggered 
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Related Work 

There already exist a large number of 
simulators that can be used for modelling and 
simulation of computer-based systems, for 
example Matlab/Simulink and the open source 
counterparts SciLab and Ptolemy. In principle, 
these environments provide similar 
functionality to the approach presented in this 
article, sometimes using additional extensions 
such as TrueTime and Syndex for architecture 
exploration. 

 However, common to all these tools is 
that they either have no description of the 
actual software functionality or they have a 
very detailed, low-level description of the 
functionality which is error -prone to write and 
hard to maintain. For example, Stateflow 
allows the specification of state transition 
models, but the action code has to be written 
as a so-called Matlab s-function in order to be 
executable. Alternatively, C-code can be 
compiled directly into the model. In both 
cases, the level of abstraction is low, certainly 
not amenable for the type of architectural 
exploration we envisage here. 

Instead, we propose to use VDM++ to 
model the software of the system. VDMTools 
provides a round-trip engineering facility to 
UML, which allows a close correspondence to 
the tools and languages that software 
engineers use. In fact, there is no need to make 
a separate model, the VDM++ model can be 
used later on as the top-level specification of 
the software to be implemented. Last but not 
least, due to its formal basis, the same 
VDM++ models can also be subjected to 
formal analysis tools to infer correctness; this 
provides a gradual transition path for our 
exploratory approach to the design and 
implementation phase whereas all other 
approaches require a paradigm shift towards 
the target language and platform. Only in a 
limited number of cases can automation (by 
means of code generation) help to overcome 
this hurdle. 

In summary, this paper proposes a novel 
simulation based evaluation approach where 
models of different system architectures can 
be investigated efficiently because a high-
level abstract description of the software 
functionality can be maintained at all times. 

Concluding Remarks 

The case study has illustrated how the 
VDM++ approach enables the production of a 
model of software components that can be 
deployed to different processors that 
communicate over different communication 
media with different capacities. It has been 
demonstrated how  that model can enable  the 
formulation of system-level timing 
requirements and how potential bottlenecks 
can be discovered at a very early stage in 
development. In addition it has been 
illustrated how graphical overviews of traces 
of the interpretation of a given scenario 
executed on the model with the different 
processors can be displayed. 

However, this is by no means a solution 
that solves all the problems of a system 
architect in the early stages of the system life 
cycle. However, we do believe that this 
approach has a lot of potential and extension 
possibilities that can be used by system 
architects in a very cost-efficient way.  

There are many different directions that 
we envisage this approach can be extended. 
First of all, we have already started 
investigating how this technology can be 
combined with continuous time models of 
physical processes in the environment, made 
in different formalisms. We think that such an 
extension is particular valuable in or der to be 
able to bridge the gap between traditionally 
disjoint disciplines such as mechanical, 
control and software engineering. In addition 
we believe that the support provided for the 
validation of system-level timing properties 
over the traces from the simulations can be 
significantly improved by specifying explicit 
properties over those traces. 
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We see the approach proposed here as a 
means to reduce complexity while the rigor is 
increased at the same time. Since we target 
this to be used in the very early life cycle 
stages we envisage that the ability of being 
able to execute different scenarios can provide 
important feedback to the system architect 
both about the intended system behaviour as 
well as potential timing bottlenecks for the 
system. Discovery of those limitations can be 
important in the dimensioning and structuring 
of the system architecture. 
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