
Resilience Modelling Through Discrete Event and Continuous Time
Co-Simulation

Zoe Andrews, John Fitzgerald
School of Computing Science

Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

{Z.H.Andrews, John.Fitzgerald}@ncl.ac.uk

Marcel Verhoef
Chess and Radboud University Nijmegen

PO Box 9010, 6500 GL Nijmegen, NL
Marcel.Verhoef@chess.nl

Abstract

We propose an approach to discrete event and continu-
ous time co-simulation that permits the analysis of alterna-
tive fault-tolerance strategies in formal models of embedded
systems at early design stages. The approach is based on
the use of a model-oriented specification language with a
continuous time simulator modelling controlled processes.
This permits the explicit modelling of faults and the analysis
of the resilience properties of a design.

1 Introduction

In the early stages of developing an embedded system,
the designer is often faced with highly volatile require-
ments. In such a context, understanding faults and select-
ing fault tolerance mechanisms is a considerable challenge.
Modelling tools should help to alleviate this problem by
providing rapid feedback on the consequences of selecting
design alternatives. However, few such tools provide fa-
cilities for the explicit modelling of faults and the analysis
of their effects. We propose an extension to an established
modelling framework to allow the specification of faults in
hybrid models of real-time systems. We outline the tech-
nology (Section 2) and indicate how it has been extended
to accommodate continuous time simulations of controlled
processes. We then consider the integration of faults into
such a hybrid model (Section 3). Finally, we consider the
potential for further work on the semantics and pragmatics
of this framework.

2 VDM++ Technology

VDM++ [1] is an object-oriented, model-based formal
specification language supported by industry strength tools
(http://www.vdmtools.jp/en). It supports the construction
of abstract system models composed of class specifications,

class Controller
instance variables

level : real := 0.0
valve : bool := false

operations
async public open: () ==> ()
open () == valve := true;
async public close: () ==> ()
close () == valve := false;

end Controller

Figure 1. Controller model in VDM++

each of which contains definitions of data types, instance
variables and methods. Types may be simple such as bool
or nat, or abstract collections types such as maps, records
and object references. Functionality is described in terms
of operations that can be described explicitly or underspec-
ified. A class can be made “active” by specifying a thread,
i.e. a sequence of statements which are executed to comple-
tion. Extensions to support modelling real-time embedded
and distributed systems have been proposed [2], including
primitives for modelling deployment to distributed hard-
ware and support for asynchronous communication. Co-
simulation of continuous time models of controlled pro-
cesses in 20-SIM (http://www.20sim.com) from within a
discrete-time model of the controller in VDM++ have re-
cently been demonstrated [3]. However, the technology
lacks a clean approach to explicit specification of faults that
would support comparison of fault tolerance strategies.

A classical control problem is used to discuss co-
simulation in VDM++ and 20-SIM. Consider the design of
a control system that maintains an acceptable level of water
in a tank. There is a constant flow of water into the tank
and a tap at the bottom to control the water level. The con-
troller responds to both time triggered events (the controller
queries the current water level at regular intervals) and state
triggered events (an event occuring in the continuous time
simulator, such as the water level reaching a limit). At the



occurence of each of these events the controller determines
whether the tap should be open or closed depending on the
water level provided to it by the continuous time simula-
tor. Here we focus on state triggered events only. Figure 1
shows a VDM++ model of the controller. The instance vari-
ables level and valve are shared with the continuous time
model of the watertank, which is described by differential
equations. The asynchronous operations open and close are
executed when the high- or low water sensor is triggered.

3. Modelling Faults

Currently the main focus of formal methods is to check a
model of a system for correct behaviour. We are interested
in extending this to include consideration of the likelihood
of correct behaviour in the presence of faults. Our approach
is to extend the VDM++ framework [1] to allow fault as-
sumptions to be explicitly stated within a model.

Extending the VDM++ framework in this way allows a
system designer to experiment with fault tolerance strate-
gies and get early feedback about which works best. For
example, in the water tank scenario it would be possible to
model the situation where the level sensors can fail. The
designer would need to investigate different strategies for
coping with such failures. Assuming a cost limitation of
six sensors, how should they be positioned to get maximum
benefit and reduce the probability of the water level going
past the limits? Two configurations are shown in Fig. 2.
In Fig. 2a the sensors are replicated at each water level limit
and majority vote is used to determine the level. This would
tolerate one faulty sensor and detect two sensors failing in-
dependently. In Fig. 2b, the two sensors placed within the
limits provide a warning signal when nearing the bound-
aries, which could trigger an event that increases the fre-
quency of the time-triggered level checks. The sensors out-
side the limits provide an emergency indication that action
is needed to bring the water level back within limits. Both
solutions are designed to improve the chances of the water
level remaining within acceptable limits, but which gives
the higher probability of this? We aim to link VDM++ tools
with some probability tools to provide both analytical and
simulation-based exploration of questions like this.

For the tank case study, initial experiments have shown
that it is possible to inject faults in the interface between the
continuous time simulator and the discrete event controller,
and have highlighted some interesting issues. This provides
us with the capability to inject, reject or modify events or
continuous variables on the fly, in both the time and value
domain, without affecting either the 20-sim or the VDM++
model. We believe this is conceptually very powerful, since
our explicit failure models are kept orthogonal to the sys-
tem model. For example, it is straightforward to inject a
constant discrepancy between the actual value of the water

Figure 2. Sensor configurations

level and the value that the discrete event controller sees.
An effect of such a fault, which is highlighted by the sim-
ulation tools, is that the continuous time model could sig-
nal a state event as the water level reaches one of the lim-
its, but because the controller sees a different value (one
within acceptable limits) no action is taken. The designer
may wish to consider having a way in which the discrete
event controller can distinguish between state and time trig-
gered events. Such design alterations would be harder to
make if they were not discovered until the testing phase of
production, thus it is important to have tools to highlight
these issues in the early stages of design.

4. Further Work

The experiments using the tank example as outlined in
this paper will provide an initial idea of how best to integrate
stochastic properties and reasoning into VDM++ models.
Further case studies are proposed to extend and validate this
approach. These will increase not only in complexity, but
also in the level of assurance required, and as such the se-
mantics of any extensions made to VDM++ would need to
be formally defined to allow reasoning about properties of
the model.

References

[1] J. Fitzgerald, P. Larsen, P. Mukherjee, N. Plat, and M. Ver-
hoef. Validated Designs For Object-Oriented Systems.
Springer-Verlag, 2005.

[2] M. Verhoef, P. Larsen, and J. Hooman. Modeling and Validat-
ing Distributed Embedded Real-Time Systems with VDM++.
In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM 2006:
Formal Methods, LNCS 4085, pages 147–162. Springer Ver-
lag, 2006.

[3] M. Verhoef, P. Visser, J. Hooman, and J. Broenink. Co-
simulation of distributed embedded real-time control systems,
2007. To appear in Proc. IFM 2007: Integrated Formal Meth-
ods, Springer Verlag, 2007.


