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Why System Architecting is hard (1)

● Early phases system life-cycle are extremely volatile
● Many unknowns (not just technical)
● Nevertheless the key decisions need to be made early on
● Often out-of-phase system development occurs
● Design is typically mono-disciplinary organized
● “Shooting at a moving target”



  

Why System Architecting is hard (2)

● Task of the System Architect is to

– Increase confidence in the system
– To reduce project and product risks
– While dealing with uncertainty 
– Working under high time pressure

● The System architect needs to bridge the gap between the 
disciplines and deal with the design complexity in a very cost-
effective way



  

Can Formal Methods Help?

● Yes, FM offer great opportunities to beat complexity
● No, FM typically take too much effort and resources

(If you need to mow the lawn, don't take scissors).

Is there a middle way? We believe there is.

Its been around for a while and it is called VDM.



  

VDM++ for distributed embedded real-time?

● VDM++ has excellent industrial track record
[BVW1999], [HA2000], [FLMPV2005], [KON2005]

● Industry strength tools are available
VDMTools → http://www.vdmtools.jp/en

● UML coupling, code generation, round-trip engineering

● But: new application domain for CSK Systems



  

On the use of VDM++ in industry

● Felicia Networks (Sony Corporation)
● Formal specification of firmware for mobile phone IC
● 150 man year project (50 people, 3 years)
● 100.000 lines, 700 page specification written in VDM++
● Validated by 10.000.000 test cases using VDMTools
● Measured quality improvement due to formal modeling
● Project on-time, within budget
● Product roll-out Q4-2006: 10.000.000 ICs

[source: Overture workshop, FM'06, Shin Sahara, CSK Systems]



  

VDM++ useful for distributed real-time?

● Timed VDM++ was our starting point
● Evaluate language and tools in this application domain
● Changes to notation and tool support were needed
● Prototype these changes and validate
● Challenge: keep changes minimal



  

VDM++ in a nutshell (1)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Buffer
instance variables

val : [nat] := nil
operations

public Set: nat ==> ()
Set (pv) == val := pv;

public Get: () ==> nat
Get () ==
  ( dcl res : nat := val;
    val := nil;

 return res )
sync

per Set => val = nil;
per Get => val <> nil;
mutex (Get, Set)

end Buffer



  

VDM++ in a nutshell (2)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Producer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Producer: Buffer ==> Producer
Producer (pBuf) == theBuf := pBuf

thread
while true do
  ( theBuf.Set(theVal);
    theVal := theVal + 1 )

end Producer

caveat: scheduling policy can be specified



  

VDM++ in a nutshell (3)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Consumer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Consumer: Buffer ==> Consumer
Consumer (pBuf) == theBuf := pBuf

thread
while true do
  theVal := theBuf.Get()

end Consumer



  

VDM++ in a nutshell (4)



  

Timed VDM++ (1)

● VDM++ plus
● (default) duration
● periodic

class Buffer
instance variables

val : [nat] := nil
operations

public Set: nat ==> ()
Set (pv) ==
  duration (100) (val := pv);
public Get: () ==> nat
Get () ==
  duration (250)
    ( dcl res : nat := val;
      val := nil;

   return res )
sync

per Set => val = nil;
per Get => val <> nil;
mutex (Get, Set)

end Buffer
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Timed VDM++ (2)

● VDM++ plus
● (default) duration
● periodic

class Producer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Producer: Buffer ==> Producer
Producer (pBuf) == theBuf := pBuf;

public Insert: () ==> ()
Insert () ==
  ( theBuf.Set(theVal);
    theVal := theVal + 1 )

thread
periodic (1000)(Insert)

end Producer



  

Timed VDM++ (3)

1000                               100  

250
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The In-Car Radio Navigation System

● Car radio with a built-in navigation system
● User-interface needs to be responsive
● TMC messages must be processed in a timely way
● Several applications may execute concurrently

http://people.ee.ethz.ch/~leiden05/data/pset/p2.pdf



17

Change Volume Application
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Handle TMC Application
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Proposed Architectures
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Modeling the case study in Timed VDM++



  

Problems encountered

● MoC (uni-processor multi-threading) is too restrictive
● Only synchronous operation calls are supported
● duration cannot be specified relative to capacity
● There is no means to capture the distributed architecture
● There is no notion of deployment
● Strict periodic behavior is assumed (no jitter)



  

Solutions proposed

● MoC: communicating multi-processor multi-threading
● Introduce asynchronous operations (“async”)
● Introduce context aware time penalties (“cycles”)
● Introduce BUS and CPU as first class citizens
● Class instances can be deployed on a specific CPU
● Introduce the system class to capture the architecture
● Allow non-strict periodic behavior (p, j, d, o)



  

Absolute and relative elapse time

class Radio
operations
async public AdjustVolume: nat ==> ()
AdjustVolume (pno) ==

( duration (150) skip;
  RadNavSys̀ mmi.UpdateVolume(pno) );

  async public HandleTMC: nat ==> ()
HandleTMC (pno) ==

( cycles (10000) skip;
  RadNavSys̀ navigation.DecodeTMC(pno) )

end Radio

CAN BE REPLACED BY AN
ARBITRARY COMPLEX

STATEMENT



  

Absolute and relative elapse time

class Radio
operations
async public AdjustVolume: nat ==> ()
AdjustVolume (pno) ==

( duration (150) skip;
  RadNavSys̀ mmi.UpdateVolume(pno) );

  async public HandleTMC: nat ==> ()
HandleTMC (pno) ==

( cycles (10000) skip;
  RadNavSys̀ navigation.DecodeTMC(pno) )

end Radio



  

Composing the distributed architecture (1)

system RadNavSys
instance variables
-- create the class instances
static public mmi := new MMI();
static public radio := new Radio();
static public navigation := new Navigation();



  

Composing the distributed architecture (2)

...
-- create the computation resources
CPU1 : CPU := new CPU(<FP>, 22E6, 0);
CPU2 : CPU := new CPU(<FP>, 11E6, 0);
CPU3 : CPU := new CPU(<FP>, 113E6, 0);

  -- create the communication resource
BUS1 : BUS := new BUS(<FCFS>, 72E3, 0,
                      {CPU1, CPU2, CPU3})



  

Composing the distributed architecture (3)

...

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==
  ( CPU1.deploy(mmi);
    CPU2.deploy(radio);
    CPU3.deploy(navigation) )

end RadNavSys



  

Modeling the environment

class TransmitTMC
...
operations

async public handleEvent: nat ==> ()
handleEvent (pev) == s2e := s2e munion {pev |-> time}
  post forall idx in set dom s2e &
         s2e(idx) – e2s(idx) <= 1000;

async createSignal: () ==> ()
createSignal () ==
  ( dcl num : nat := getNum();
    e2s := e2s munion {num |-> time};
    RadNavSys`radio.HandleTMC(num) )

thread
periodic (3000, 4500, 1000, 0) (createSignal)

end TransmitTMC



  

Case study – Summary and overview



  

Symbolic execution (1)



  

Symbolic execution (2)



  

Some complexity removed...



  

On the use of formal techniques

● Abstract formal operational semantics for the new MoC
● Not specific to VDM++
● Machine checked with PVS

http://www.cs.ru.nl/~hooman/FM06.html
● Executable Constructive Operational Semantics (COS)

specified in VDM++
● Validated using VDMTools

http://www.cs.ru.nl/~marcelv/vdm/ 
● COS merged into the VDMTools operational semantics 

specification (proprietary)



  

Results

● Significant decrease in model size
● Improved expressiveness, better domain applicability
● Minor syntactic changes – rather intuitive
● Major semantic changes – but “backwards compatible”
● Early exploration of deployment is now possible



  

Future work (1)

● On the notation

– Duration as intervals, probabilities
– From validation towards verification
– History aware synchronization primitives
– Explicit support for time-outs
– Predicates over traces

● On the case study

– Comparison to other techniques (MPA, UPPAAL, ...)
– Comparison to measurements on real system



  

Future work (2)

df
dt

df
dt

LOW

HIGH

class Controller
instance variables
  level : real := 0.0;
  valve : bool := false
operations
  public async open: () ==> ()
  open () == valve := true;
  public async close: () ==> ()
  close () == valve := false;
  public async update: () ==> ()
  update () ==
    if level < 2.0 then close()
    else if level > 3.0 then open()
threads
  periodic (0, 1000, 0, 0) (update)
end Controller


