

Modeling and Validating Distributed
Embedded Real-Time Systems with VDM++

Marcel Verhoef – CHESS & Radboud University Nijmegen (NL)
Peter Gorm Larsen – Engineering College of Aarhus (DK)
Jozef Hooman – ESI & Radboud University Nijmegen (NL)

Contents of this talk

● Motivation – early life-cycle system architecting

● VDM++ for distributed embedded real-time

● Case study: In-Car Radio Navigation System

● The role of formal methods

● Conclusions and future work

Why System Architecting is hard (1)

● Early phases system life-cycle are extremely volatile
● Many unknowns (not just technical)
● Nevertheless the key decisions need to be made early on
● Often out-of-phase system development occurs
● Design is typically mono-disciplinary organized
● “Shooting at a moving target”

Why System Architecting is hard (2)

● Task of the System Architect is to

– Increase confidence in the system
– To reduce project and product risks
– While dealing with uncertainty
– Working under high time pressure

● The System architect needs to bridge the gap between the
disciplines and deal with the design complexity in a very cost-
effective way

Can Formal Methods Help?

● Yes, FM offer great opportunities to beat complexity
● No, FM typically take too much effort and resources

(If you need to mow the lawn, don't take scissors).

Is there a middle way? We believe there is.

Its been around for a while and it is called VDM.

VDM++ for distributed embedded real-time?

● VDM++ has excellent industrial track record
[BVW1999], [HA2000], [FLMPV2005], [KON2005]

● Industry strength tools are available
VDMTools → http://www.vdmtools.jp/en

● UML coupling, code generation, round-trip engineering

● But: new application domain for CSK Systems

On the use of VDM++ in industry

● Felicia Networks (Sony Corporation)
● Formal specification of firmware for mobile phone IC
● 150 man year project (50 people, 3 years)
● 100.000 lines, 700 page specification written in VDM++
● Validated by 10.000.000 test cases using VDMTools
● Measured quality improvement due to formal modeling
● Project on-time, within budget
● Product roll-out Q4-2006: 10.000.000 ICs

[source: Overture workshop, FM'06, Shin Sahara, CSK Systems]

VDM++ useful for distributed real-time?

● Timed VDM++ was our starting point
● Evaluate language and tools in this application domain
● Changes to notation and tool support were needed
● Prototype these changes and validate
● Challenge: keep changes minimal

VDM++ in a nutshell (1)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Buffer
instance variables

val : [nat] := nil
operations

public Set: nat ==> ()
Set (pv) == val := pv;

public Get: () ==> nat
Get () ==
 (dcl res : nat := val;
 val := nil;

 return res)
sync

per Set => val = nil;
per Get => val <> nil;
mutex (Get, Set)

end Buffer

VDM++ in a nutshell (2)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Producer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Producer: Buffer ==> Producer
Producer (pBuf) == theBuf := pBuf

thread
while true do
 (theBuf.Set(theVal);
 theVal := theVal + 1)

end Producer

caveat: scheduling policy can be specified

VDM++ in a nutshell (3)

● Class
● Values
● Types
● Instance variables
● Functions
● Operations
● Threads
● Synchronization

class Consumer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Consumer: Buffer ==> Consumer
Consumer (pBuf) == theBuf := pBuf

thread
while true do
 theVal := theBuf.Get()

end Consumer

VDM++ in a nutshell (4)

Timed VDM++ (1)

● VDM++ plus
● (default) duration
● periodic

class Buffer
instance variables

val : [nat] := nil
operations

public Set: nat ==> ()
Set (pv) ==
 duration (100) (val := pv);
public Get: () ==> nat
Get () ==
 duration (250)
 (dcl res : nat := val;
 val := nil;

 return res)
sync

per Set => val = nil;
per Get => val <> nil;
mutex (Get, Set)

end Buffer

S T

S T S T

S T S S S ()

informal semantics

Timed VDM++ (2)

● VDM++ plus
● (default) duration
● periodic

class Producer
instance variables

public theBuf : Buffer;
private theVal : nat := 0

operations
public Producer: Buffer ==> Producer
Producer (pBuf) == theBuf := pBuf;

public Insert: () ==> ()
Insert () ==
 (theBuf.Set(theVal);
 theVal := theVal + 1)

thread
periodic (1000)(Insert)

end Producer

Timed VDM++ (3)

1000 100

250

16

The In-Car Radio Navigation System

● Car radio with a built-in navigation system
● User-interface needs to be responsive
● TMC messages must be processed in a timely way
● Several applications may execute concurrently

http://people.ee.ethz.ch/~leiden05/data/pset/p2.pdf

17

Change Volume Application

Navigation Radio

User Interface

Database

Communication

50 msec

200 msec

18

Handle TMC Application

Navigation Radio

User Interface

Database

Communication

1000 msec

19

Proposed Architectures

NAV RAD

MMI

22 MIPS

11 MIPS113 MIPS

NAV RAD

MMI

22 MIPS

11 MIPS113 MIPS

RAD

260 MIPS

NAV

MMI

22 MIPS

RAD

130 MIPS

MMI

NAV

113 MIPS

MMI

260 MIPS

RAD

NAV

72 kbps

72 kbps 57 kbps
72

 k
bp

s

72
 k

bp
s

(A)

(E)(D)(C)

(B)

Modeling the case study in Timed VDM++

Problems encountered

● MoC (uni-processor multi-threading) is too restrictive
● Only synchronous operation calls are supported
● duration cannot be specified relative to capacity
● There is no means to capture the distributed architecture
● There is no notion of deployment
● Strict periodic behavior is assumed (no jitter)

Solutions proposed

● MoC: communicating multi-processor multi-threading
● Introduce asynchronous operations (“async”)
● Introduce context aware time penalties (“cycles”)
● Introduce BUS and CPU as first class citizens
● Class instances can be deployed on a specific CPU
● Introduce the system class to capture the architecture
● Allow non-strict periodic behavior (p, j, d, o)

Absolute and relative elapse time

class Radio
operations
async public AdjustVolume: nat ==> ()
AdjustVolume (pno) ==

(duration (150) skip;
 RadNavSys̀ mmi.UpdateVolume(pno));

 async public HandleTMC: nat ==> ()
HandleTMC (pno) ==

(cycles (10000) skip;
 RadNavSys̀ navigation.DecodeTMC(pno))

end Radio

CAN BE REPLACED BY AN
ARBITRARY COMPLEX

STATEMENT

Absolute and relative elapse time

class Radio
operations
async public AdjustVolume: nat ==> ()
AdjustVolume (pno) ==

(duration (150) skip;
 RadNavSys̀ mmi.UpdateVolume(pno));

 async public HandleTMC: nat ==> ()
HandleTMC (pno) ==

(cycles (10000) skip;
 RadNavSys̀ navigation.DecodeTMC(pno))

end Radio

Composing the distributed architecture (1)

system RadNavSys
instance variables
-- create the class instances
static public mmi := new MMI();
static public radio := new Radio();
static public navigation := new Navigation();

Composing the distributed architecture (2)

...
-- create the computation resources
CPU1 : CPU := new CPU(<FP>, 22E6, 0);
CPU2 : CPU := new CPU(<FP>, 11E6, 0);
CPU3 : CPU := new CPU(<FP>, 113E6, 0);

 -- create the communication resource
BUS1 : BUS := new BUS(<FCFS>, 72E3, 0,
 {CPU1, CPU2, CPU3})

Composing the distributed architecture (3)

...

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==
 (CPU1.deploy(mmi);
 CPU2.deploy(radio);
 CPU3.deploy(navigation))

end RadNavSys

Modeling the environment

class TransmitTMC
...
operations

async public handleEvent: nat ==> ()
handleEvent (pev) == s2e := s2e munion {pev |-> time}
 post forall idx in set dom s2e &
 s2e(idx) – e2s(idx) <= 1000;

async createSignal: () ==> ()
createSignal () ==
 (dcl num : nat := getNum();
 e2s := e2s munion {num |-> time};
 RadNavSys`radio.HandleTMC(num))

thread
periodic (3000, 4500, 1000, 0) (createSignal)

end TransmitTMC

Case study – Summary and overview

Symbolic execution (1)

Symbolic execution (2)

Some complexity removed...

On the use of formal techniques

● Abstract formal operational semantics for the new MoC
● Not specific to VDM++
● Machine checked with PVS

http://www.cs.ru.nl/~hooman/FM06.html
● Executable Constructive Operational Semantics (COS)

specified in VDM++
● Validated using VDMTools

http://www.cs.ru.nl/~marcelv/vdm/
● COS merged into the VDMTools operational semantics

specification (proprietary)

Results

● Significant decrease in model size
● Improved expressiveness, better domain applicability
● Minor syntactic changes – rather intuitive
● Major semantic changes – but “backwards compatible”
● Early exploration of deployment is now possible

Future work (1)

● On the notation

– Duration as intervals, probabilities
– From validation towards verification
– History aware synchronization primitives
– Explicit support for time-outs
– Predicates over traces

● On the case study

– Comparison to other techniques (MPA, UPPAAL, ...)
– Comparison to measurements on real system

Future work (2)

df
dt

df
dt

LOW

HIGH

class Controller
instance variables
 level : real := 0.0;
 valve : bool := false
operations
 public async open: () ==> ()
 open () == valve := true;
 public async close: () ==> ()
 close () == valve := false;
 public async update: () ==> ()
 update () ==
 if level < 2.0 then close()
 else if level > 3.0 then open()
threads
 periodic (0, 1000, 0, 0) (update)
end Controller

