Co-simulation of Distributed Embedded Real-time Control Systems

Marcel Verhoef¹ Peter Visser² Jozef Hooman³ Jan Broenink²

¹ Chess and Radboud University Nijmegen

- ² University of Twente, Dept EE-M-CS, Control Engineering Group
- ³ Embedded Systems Institute and Radboud University Nijmegen

Agenda

- Context and motivation
- Basic techniques: Bond-graphs and VDM++
- Case study : Water tank level controller
- Tool support and integrated operational semantics
- Results and conclusions
- Current and future work

Beyond the Ordinary: Design of Embedded Real-time Control

- BODERC project @ ESI
- Sept 2002 Apr 2007
- Multi-disciplinary design
 - mechanics
 - electronics
 - software
- High-tech systems focus
- Early life cycle trade-offs
- Industry as a laboratory
- http://www.esi.nl/boderc

Design of High-Tech Systems - State of Practice

- design is typically monodisciplinary organised
- domain specific methods and custom tools are used
- out-of-phase development and system-level focus lacking
- cross-cutting concerns postponed to the integration phase
- late validation & feedback

" INTEGRATION HELL "

Multi-disciplinary Systems Design - The Vision

- system level approach
- model-driven design
- integrated models & tools
- rapid evaluation
- early feedback
- support design dialogue
- continuous integration
- continuous validation
- less effort overall
- higher quality

The Challenge - Integrated Design Models (1)

- Notations and analysis techniques used by the disciplines are fundamentally different
 - mechanics : finite element methods
 - electronics : differential or difference equations
 - software : labelled transition systems
- Is a common notation feasible^{*} at all?

* [Henzinger & Sifakis, FM 2006 key note, LNCS 4085, pp 1-15]

The Challenge - Integrated Design Models (2)

- scope of discipline specific tools is widening
 - Matlab Simulink \rightarrow Stateflow, Real-Time Workshop, TrueTime
 - Rhapsody \rightarrow Simulink
 - UML \rightarrow SysML
- bigger piece of the pie \neq satisfy all stakeholders
- problems : poor abstraction, restrictive MoCs
- novel actor-based techniques^{*} : Ptolemy-II
- problems : disruptive approach, poor semantics

* [http://ptolemy.eecs.berkeley.edu]

Our approach - Integrated Design Models (3)

- Cross the continuous time discrete event divide
- Select a well-defined (formal) notation on either side
- Explore semantic integration of those notations
- Implement tool support for these extensions
- Investigate models by (reliable) co-simulation
- Expected benefits:
 - good abstraction facilities on both sides of the divide
 - supports light-weight modelling required in early stages
 - few a-priori MoC specific restrictions \rightarrow avoid design bias
 - fits in design flow \rightarrow low acceptance threshold for industrial uptake

Continuous Time Realm - Bond Graphs

- dynamic systems modelling, physics domain independent
 - mechanics
 - electronics
 - pneumatics
- graphical notation: Bond graphs*
- formal analysis for algebraic loops and differential causalities
- model validation through simulation and visualisation
- industry grade tool support http://www.20sim.com
 - * [Gawthrop, Bevan, IEEE Control Systems Magazine, April 2007, pp 24 - 45]

Discrete Event Realm - VDM++

- object-oriented formal modelbased specification language
- concurrency through threads
- round-trip engineering UML
- formal analysis of static and run-time (type) correctness
- model validation through prototyping & structured testing
- industrial grade tool support http://www.vdmtools.jp/en
- VICE extension* for real time, scheduling and deployment

* [Verhoef, Larsen, Hooman, FM 2006, LNCS 4085, pp 145 - 162]

Our Approach by Example - water tank case (1)

Our Approach by Example - water tank case (2)

01 variables real volume, level; 02 03 parameters real area = 1.0;04 real gravity = 9.81; 05 real density = 1.0;06 07 equations 08 // p.e = pressure, p.f = flow rate09 // integrate flow to obtain volume volume = int(p.f); 10 level = volume / area; 11 12 p.e = gravity * level * density;

Our Approach by Example - water tank case (3)

```
class Controller
01
02
03
    instance variables
      static public level : real;
04
      static public value : bool := false -- default is closed
05
06
07
   operations
      static public async open: () ==> ()
80
      open () == duration(0.05) value := true;
09
10
      static public async close: () ==> ()
11
      close () == cycles(1000) valve := false;
12
13
    loop: () ==> ()
14
    loop () ==
15
16
        if level >= 3 then value := true -- check high water mark
       else if level <= 2 then value := false; -- check low water mark
17
18
19
   threads
     periodic(1.0,0,0,1.0)(loop)
20
21
22
    sync
23
     mutex(open, close, loop)
24
25 end Controller
```

Our Approach by Example - water tank case (4)

Integrated Operational Semantics (1)

- Continuous Time model
 - sets of differential equations
 - approximate solution numerically
 - discrete integration over some time interval
 - many "solver" algorithms available e.g. Euler
 - CT shares state variables with DE model
 - capture state events: zero-crossing detection
 - capture time events: proceed to time t > now

Integrated Operational Semantics (2)

lwm = FEE (level, 2.0) hwm = REE (level, 3.0)

Tool Support (1)

20-SIM (CT simulation)

VDMTools (DE simulation)

Tool Support (2)


```
sensor[1] = cpu1.Controller'level
actuator[1] = cpu1.Controller'valve
event[1] = REE(level,3.0) -> cpu1.Controller'open
event[2] = FEE(level,2.0) -> cpu1.Controller'close
event[3] = TE(15.0) -> abort
```

Integrated Operational Semantics (3)

- Discrete Event model
 - assume given a set of resources R { cpu₁, cpu₂, cpu₃, bus₁, bus₂ }
 - assume given an architecture $bus_1 \rightarrow \{cpu_1, cpu_2\}, bus_2 \rightarrow \{cpu_2, cpu_3\}$
 - each resource has a scheduling state ss

Integrated Operational Semantics (4)

- Discrete Event model
 - each resource $r \in R$ has a set of tasks r.T and an active task $r.at \in r.T \lor r.at = nil$
 - cpu \rightarrow *threads*
 - bus \rightarrow *messages*
 - each task t \in r.T has an execution state *es*

Integrated Operational Semantics (5)

- each active task r.ta \neq **nil** can
 - either execute a state transition
 - or execute a time transition

```
x := 10
duration (100) x := 10
cycles (1000) (x := 10; y := 20)
```

caveat: duration (0) is a valid time transition

Integrated Operational Semantics (6)

- process state transactions until all resources are either idle or need to make a time transition
- determine the smallest DE time step t_{req} over all R
- CT solver is asked to move to t + t_{req}
- CT solver reaches $t + t_{rel}$ with $t_{rel} \le t_{req}$
- time on all resources is updated to $t + t_{rel}$
- events are handled (if any occurred)
- guards and scheduler are re-evaluated (if affected)
- repeat until abort time event is reached

Results and conclusions

- Coupling does not restrict tools or add complexity
- Co-simulation enables cross-discipline dialogue
- Small model size due to abstraction on both sides
- Evaluation of design options requires low effort
- Discipline specific analysis on models is still feasible
- Generic integrated operational semantics
- Heterogeneous simulation is within reach
- Case studies: light-weight models can be accurate

Future Work (1)

20-SIM (CT simulation)

VDMTools (DE simulation)

Future Work (2)

[Andrews, Verhoef, Fitzgerald, DSN 2007]

Printer paper path - case study (1)

Printer paper path - case study (2)

Printer paper path - case study (3)

Printer paper path - case study (4)

Printer paper path - case study (5)

Printer paper path - case study (6)

Printer paper path - case study (7)

