
Threads of Reasoning: A Case Study
J.H. Sandee

Technische Universiteit Eindhoven
Dept. of Elec. Eng., Control Systems
PO Box 513, 5600 MB Eindhoven

The Netherlands
j.h.sandee@tue.nl

P.F.A. van den Bosch
Océ Technologies BV

PO Box 101, 5900 MA Venlo
The Netherlands

W.P.M.H. Heemels, G.J. Muller
Embedded Systems Institute

PO Box 513, 5600 MB Eindhoven
The Netherlands

M.H.G. Verhoef
Chess Information Technology BV
PO Box 5021, 2000 CA Haarlem

The Netherlands

Sixteenth Annual International Symposium of the
International Council On Systems Engineering (INCOSE)

8 - 14 July 2006

Copyright © 2006 by J.H. Sandee. Published and used by INCOSE with permission.

Abstract. In the design of technology intensive products like copiers, wafer steppers and
televisions, one searches for a product that satisfies the product requirements as well as the
business drivers. The main need in an early design phase is to bring structure in the typical chaos
of uncertainty and the huge amount of realization options present. Potential realization choices
all have advantages and disadvantages, which cause tensions and conflicts. The earlier the
(essential) conflicts and tensions are identified, the better it is. Turning them from implicit to
explicit helps the system architect in making the trade-off consciously or at least in selecting the
most important tensions and conflicts that require further in-depth investigation. In this respect
we demonstrate the effectiveness of a technique called “threads of reasoning”. The illustrative
case study is the design of the paper flow control (sensors, actuators, control architecture, etc.) in
a high-volume copier/printer.

This work has been carried out as part of the Boderc project under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of Economic Affairs under the Senter TS program.

1 Introduction
The complexity of products being designed by industry today is increasing at an astonishing rate.
The search is for a product that will satisfy the requirements within certain margins, e.g.
development costs, production costs, response time, time to market, physical dimensions, power
consumption, noise production and so on. Often, these requirements are conflicting, so that a
right balance must be found.

The main need in the design of a product is to bring structure in the typical chaos of
uncertainty and the huge amount of options present. This is most profound in the early design
phase. Even typical product requirements might be uncertain in the sense that they are only
known up to a certain degree or are still open for discussion. Potential solutions or applied
technologies all have advantages and disadvantages, which cause tensions and conflicts. For
instance, in the design of a printer one might consider using stepper motors, DC servo-motors or

mailto:j.h.sandee@tue.nl

a combination of both for driving the sheets of paper through the paper path. While stepper
motors have the advantage of being cheaper (particularly as they do not require expensive
encoders and because of their long lifetime), they are in general less accurate in positioning the
sheets of paper. This causes a conflict between the important requirements printing accuracy on
one hand and cost price on the other. Of course, more requirements might play a role in such a
decision (e.g. size, power consumption, etc).

This article describes the technique of threads of reasoning (Muller 2004) to find such
tensions. The technique is illustrated by its application in the design of the paper flow control of
a high-volume copier/printer. The details of the technique are given together with a 5-step
iterative scheme on how to create these threads. Once identified, the main tensions and conflicts
are further investigated by modeling and measurements. The specific model-based investigations
are only indicated briefly.

In several communities there are alternative and / or related techniques available to identify
the main relations, conflicts and tensions in the design of a product. For instance, in requirement
engineering and more particular in (Wieringa 2004) one uses the term “problem bundle” that has
similar properties as a thread of reasoning. In (Wieringa 2004) these bundles are adopted for
structuring a design problem at hand and relating this to the solution space. In product line
engineering one has methods like Pulse (see e.g. (Bayer et al. 1999)) and in the system
engineering community one uses risk management approaches (INCOSE technical board 2004,
chapter 6). These techniques create similar overviews, but more retrospective. Also in VAP
(visual architecting process), see (Malan et al. 2005, chapter 2), and in ARES (Architectural
Reasoning for Embedded Software) (Jazayeri et al. 2000) related techniques can be found. In
TRIZ (Altshuller 2000) two important concepts are introduced that are also crucial in our
reasoning method: formulating the “ideal” solution and identifying the conflicts in realizing the
ideal product. Quality function deployment (QFD) (ReVelle 1998) relates product requirements
of the customer to design choices, that has from an abstract point of view resemblance with the
reasoning used in this article. However, a distinguishing feature of threads of reasoning is that it
is graph- instead of matrix-oriented. Matrix-oriented techniques have the tendency that the
number of relationships easily explodes and one easily looses overview of the essential threads.
Threads of reasoning are particularly focused on keeping only the essential tensions and
conflicts, which we consider an advantage. As a consequence, it is possible to graphically
represent the overview of the most important design issues. Moreover, most of the mentioned
methods have a tendency to move more towards the customer context and less to the realization
aspects. The case study here shows how threads of reasoning can also be used for conceptual and
realization choices of the technical design.

The disadvantage of the explosion of the number of relationships is also encountered in a
complementary approach in which one archives the design process including the conceptual and
realization choices (Alexander 2002). Often the argumentation why a certain choice has been
made is included as well. The documentation typically consists of a chronologically ordered
sequence of choices with the aim of traceability: how was a certain choice made at some point in
time? If some design changes are made in a later stage, one can still apply the reasoning as kept
in the archive. In practice this is often not doable due to the enormous complexity, which often is
the cause that the “tracing” is not kept up-to-date with the consequence that its value diminishes.
Threads of reasoning aim at keeping the essence of the design choices and help to keep
overview. In addition, although tracing techniques have their own added value, their
maintenance requires much more effort than using threads of reasoning.

The outline of the article is as follows. In the next section we describe the industrial context
being document printing systems. We also indicate the problem statement of the article and put it
in the perspective of multi-disciplinary design. The exact case study on the design of the control
architecture for the flow of sheets through the printer is also given in section 2. In section 3
“threads of reasoning” is described. In section 4 threads of reasoning are applied to identify the
tensions and conflicts in the case study. This leads to tensions that require a further study via
modeling, measurements or other techniques to obtain a well-founded trade-off. In the same
section we indicate briefly which models have been applied to do the in-depth analysis. In
section 5 the conclusions are stated.

2 Printer design context and problem formulation

2.1 Research topic
The research topic of the current article is coupled to the Boderc project (see Embedded

Systems Institute 2003), which aims at developing a design methodology based on multi-
disciplinary modeling to predict the performance of a system in an early design phase (see figure
2.1). The methodology (Heemels et al. 2006) consists of several modeling formalisms, analysis
techniques to make implicit knowledge in models explicit, tools to support modeling and
analysis, and a method providing guidelines how and in which order to apply formalisms,
techniques and tools.

Boderc goal =

A specific methodology

to predict

system performance

within industrial and resource constraints

based on
modeling

analyze, discuss,
document and
communicate

throughput, qualitiy

power
computing
response time

people, process,
project duration,

and cost

multi-
disciplinary

Figure 2.1: Annotated research goal of Boderc
Typically, the industrial constraints of project duration and available man power imply that

one should focus the analysis (via modeling) on the most critical issues (instead of “wasting”
effort on less relevant problems). Therefore, one of the steps in the Boderc method will be the
identification of the most essential conflicts and tensions. This is where the current article is
positioned. Threads of reasoning, as explained in section 3, is one of the techniques to find these
essential tensions, to create overview and insight in the overall design and indicate on which
issues further (model-based) analysis is required.

2.2 Industrial case description
The case study zooms in on the embedded control of the paper flow through a high-volume
document copying and printing system. As we will not consider the scanning part of the copier,
we will use the term printer in this article.

prin t engine reg istration modu le

paper
input

modu le

fin isher

image
processing

image

fuse

sensors

p inches motors

contro l
SW

paper pa th

 F U S E

x

S T O P

I M A G E

F I N
P I M

P 4

P 1 2 P 1 1

P 1 0
P 9

P 3

P 2

P 1
P 0

P 5

P 8

P 7 P 6

Figure 2.2: Overview of the different
components of the printer.

Figure 2.3: Paper path, with positions
of the pinches, bypass and duplex loop.

In figure 2.2 a schematic overview of the printer is presented. A sheet is separated from the
trays in the Paper Input Module (PIM), after which it is sent to the paper path that transports the
sheets accurately in the direction of the print engine, where the image is fused on a sheet of
paper. After that, the sheet is transported by the paper path to the finisher (FIN). In figure 2.3 a
more detailed drawing of a paper path is given.

The design of a printer should be such that performance indicators like
o throughput (pages per minute),
o printing accuracy (positioning of the image on the sheet),
o time-to-first-print (the time it takes before the first sheet comes out of the printer, after

pressing “start”)
are satisfactory within certain resource constraints like

o power usage,
o cost price,
o size,

and business constraints like
o time-to-market and
o available man-power, amongst others.

The term main design drivers will be used for the above items.

For the case study, the mechanical lay-out is already given meaning that positions of (paper
transport) pinches, the length and shape of the paper path, etc. are known. The design process is
in the phase of selecting the control architecture, including:

o Selection of actuators (type and number of motors)
o Selection of sensors
o Selection of the processing architecture (e.g. centralized versus distributed control)
o Selection of operating system (event-driven or time sliced architectures?)
o How will the sheets be scheduled given a print job?
All these choices for the control architecture should be satisfactory in view of the main

design drivers as mentioned above.

3 Threads of reasoning
Threads of reasoning is an iterative and informal technique to identify the most important points
of tension in the problem and potential solutions. The system architect uses threads of reasoning
implicitly to integrate various views in a consistent and balanced way, to get a valuable, usable
and feasible product. Architects perform this job by continuously iterating over many different
points of view and sampling the problem and solution space to build up an understanding of the
case. These threads are made explicit by the technique of threads of reasoning.

This technique, as presented in the next section, is based on the work (Muller 2004, chapter
12). A difference between the technique used here and the one by Muller lies in the categories or
views used. In particular, threads of reasoning in (Muller 2004) uses the CAFCR framework that
adopts the “Customer objectives” (addressing the “what” question from the customer
perspective), “Application” (addressing the “how” question of the customer), “Functional”
(addressing the “what” question of the product), “Conceptual” and “Realization” views
(addressing the “how” of the product). Instead of the CAFCR views, it was in our case more
suitable to use the following categories:

o main design drivers: important requirements of the system design (typically applying to
system level), see section 2.2.

o sub drivers: drivers, derived from the main design drivers (typically applying to
subsystem level)

o design choices: possible solutions or realizations
o consequences: indicating consequences of a design choice
The threads themselves are formed by multiple connections between the categories above.

3.1 Overview of threads of reasoning

2. create insight
- story telling
- narratives
- use cases

3. deepen insight
- tests, measurements
- models, simulations

4. broaden insight
- questions: why, what, how

5. define and extend the thread
- what is most important / valuable?
- what is most critical / sensitive?
- look for conflicts and tensions

1. select starting point
- actual dominant need or problem

Continuously

consolidate in

simple models,

communicate

to stakeholders

and refactor

documentation

Figure 3.1: Overview of reasoning approach

Figure 3.1 gives an overview of the threads of reasoning technique. Step 1 is to select a
starting point. After step 1 the iteration starts with step 2 create insight. Step 3 is deepening the
insight and step 4 is broadening the insight via suitable questions. Step 5 defines and extends the
thread. Moreover, the next iteration is prepared by step 5. In step 5, first the most important and
critical threads are selected and one aims at finding conflicts and tensions. This insight and
refinement might lead to selecting the next need or problem for the new iteration. During this
iteration continuous effort is required to communicate with the stakeholders to keep them up to

date, to consolidate in simple models the essence of the problem and to refactor the
documentation to keep it up to date with the insights obtained.

As mentioned before, the focus of threads of reasoning in the Boderc design methodology is
to select the critical design issues (step 5) that require in-depth studies (via modeling) to make a
sound design trade-off. The in-depth studies are essentially step 3 in figure 3.1. The limited
models for consolidation, communication and reasoning are derived from these possibly more
complex and detailed models for analysis. Especially, since these deep studies require a major
part of the design time, one has to be selective in the ones that are actually carried out. Of course,
this does not mean that once the answers of these analyses have been obtained, the thread of
reasoning is finished. On the contrary, it might actually be altered based on the findings or
continued given these new pieces of information.

Below we will describe each of the individual steps in more detail. Moreover, we will present
already one thread of reasoning as an example from the case study to illustrate the steps.

Step 1: Select a starting point. A good starting point is to take a need or problem that is very
hot at the moment. If this issue turns out to be important and critical then it needs to be addressed
anyway. If it turns out to be not that important, then the outcome of the first iteration serves to
diminish the worries in the organization, enabling it to focus on the really important issues. In
practice there are many hot issues that after some iterations turn out to be non-issues. This is
often caused by non-rational fears, uncertainty, doubt, rumors, lack of facts, etc. Going through
the iteration, which includes fact finding, quickly positions the issues. The actual dominant needs
or problems can be found by listening to what is mentioned with the greatest loudness, or which
items dominate in all discussions and meetings.

Example. An important issue in the paper flow control is the question how many processing
nodes should be used. Because of the size and the complexity of the software, which is both soft
real-time and hard real-time for the various implemented functions, it is almost impossible to
process all the code on one node, i.e. one processor. Nevertheless, there are various ways to
distribute the software functionality over different (numbers of) nodes. There can be several
‘local nodes’ that handle separately the control of single motors. Another option is to have only
two big processing nodes that handle the entire paper flow control. This design choice is selected
as the starting point of the thread.

Step 2: Create insight. In this phase one wants to obtain a rough overview and insight of the
chosen issue. The selected issue can be considered by means of one of the many (sub)methods to
create more understanding. Typically, this can be done by the submethods story telling (Muller
2004, chapter 11), narratives (Cockburn, 2000) or scenario-based reasoning using e.g. use-cases
(Cockburn, 2000). Using these submethods, it will quickly become clear what is known (and can
be consolidated and communicated) and what is unknown, and what needs more study and hence
forms input for the next step.

Example. To create some first insight into the problem of selecting the number and sizes of the
processors in the control architecture, we linked this issue to the main design drivers (section
2.1). For the time-to-market to be short, it is important to have a predictable development
process. Therefore, a concurrent design process is preferred, which is in favor of having multiple
processing nodes. On the other hand, we also want the cost price to be low. Here, the question
pops up how the cost price relates to the number of nodes. Looking at the driver power
consumption, there is some relation (more nodes require more power?), but more specific
information is needed to reveal the true relation and its importance.

Step 3: Deepening the insight. The insight is deepened by gathering specific facts. This can be
done by modeling (simulation), or by tests and measurements on existing systems. Since the
presented technique is iterative, in a first iteration one aims at using simple models,
measurements or facts that are obtained in a reasonably short time. Typically back-of-the-
envelope calculations or rules of thumb that are known from previous projects are useful. In a
second or subsequent iteration one selects the essential issues (most uncertain, most important)
that require more modeling and analysis effort. This aspect is coupled directly to the Boderc
design methodology (see Section 2.1) based on multi-disciplinary modeling: to discover and
select the in-depth modeling activities that have to be performed to support the system architect
in taking (well-founded) design choices. Typically, the models are aimed at shedding light on the
tensions and conflicts, which were identified earlier (step 5, first iteration).

Example. To get deeper insight in the issues of cost price and power usage of processors, more
specific information is needed. For the cost price it turned out that the use of more nodes
produces higher costs, mainly because of production costs of the supporting hardware for these
processors. A rough quantitative estimate showed that the price per node is typically about 40
euros, of which 10 euros is calculated for the controller and 30 euros for the printed circuit board
(PCB). Because for every node a separate PCB is used, doubling the number of processors
roughly means doubling the cost price, although the cost price of the processor can be somewhat
less for simple variants. Looking at power demands, it turned out that both the smaller and the
bigger processors use about 3 Watt. It would therefore be beneficial to have as few processors as
possible. On the other hand, if we look at the power demands from other modules in the printer,
that use up to 2 kW, we assume that the power demand from the processors is of minor
importance (Freriks et al. 2005a). Therefore, the power issue will not be included in this thread
of reasoning as we aim at describing only the most important aspects.

Step 4: Broadening the insight. Needs and problems are never nicely isolated from the context.
In many cases the reason why something is called a problem is because of the interaction
between the function and the context. The insight is broadened by relating the need or problem to
the other views or categories. This can be achieved by answering why, what and how questions.
Examples: How can a main design driver be realized by sub drivers? How is a certain issue
tackled? Why is a certain design choice good for a specific main design driver? What are the
consequences of a design choice? How is the consequence related to a specific driver? The
insight in the main design driver dimension can also be broadened by looking at the interaction
with related system qualities: what happens with safety or reliability when we increase the
performance?

Example. If we separate the software over multiple nodes, how efficiently can the software still
be implemented? What happens if all software would run on two processors (e.g. would there be
problems with synchronization)? How would multiple processors be connected? Of course, these
questions reveal the need for more facts, for which more iterations of the process are needed.

Step 5: Define and extend the thread. In the previous steps and corresponding discussion of the
needs, design choices and problems, many new issues pop up. A single problem can trigger an
avalanche of new problems. Key in the approach is not to drown in this infinite ocean full of
issues, by addressing the relevant aspects of the problem. This is done by evaluating:

1) Which specification and design decisions seem to be the most conflicting, i.e. where is
the most tension;

2) What is the value or the importance of the problem for the customer;

3) How challenging it is to solve, at least in the sense that problems that can be solved in a
trivial way should immediately be solved;

4) How critical the implementation is. The implementation can be critical because it is
difficult to realize, or because the design is rather sensitive or rather vulnerable (for
example, hard real-time systems with processor loads close to 70% or higher).

To evaluate the above aspects, the system architect often uses 'gut-feeling' based on many years
of experience. To do the evaluation in a more structured way, several methods are available.
Analysis techniques, such as Failure Mode Effects and Criticality Analysis (FMECA) can be
used to analyze the impact of potential problems in the system. Typically, these techniques are
used when the design is finished but they can be equally productive during other life-cycle
phases. To compare various solutions, trade studies (INCOSE technical board 2004, section
11.16) can effectively be applied.

The next crucial element is to define the thread: identification of the tension between needs
and implementation options. The problem can be formulated in terms of this tension. We believe
that a clearly articulated problem is half of the solution.

The insights obtained so far in terms of most crucial and critical threads and tensions, should
help to select the new need or problem to go into the next iteration (back to step 2).

Example. At this moment in our reasoning on the number and size of processing nodes, the first
thread becomes visible, as visualized in figure 3.2.

COST PRICE
Few components

TIME-TO-MARKET Predictable
dev process

Separation of functions
over multiple nodes

Concurrent design of SW

Sub driver
Choice

Conflict

Over-dimensioned
resources

Consequence

Figure 3.2: Example thread in the design of the paper flow control.

The thread is structured by means of the framework of the categories as introduced before.
The interpretation of this visualization is as follows:

o On the left of the picture, the relevant main design drivers are given in capitals.
o From the main design drivers, sub drivers are derived, indicated in bold face (blue).
o Specific design choices result from these sub drivers, indicated in italic (green).
o The consequences that come with specific choices, are depicted with small dashed arrows

(purple).
o The main conflicts that are identified between any of the above mentioned aspects of the

system, are depicted with thick double arrows (red).
Note that in step 3 we already concluded that the main design driver power should not be

included in this thread. Hence, a step 5 action of discarding less relevant aspects of a thread was
already applied. We see that from the question of how many processing nodes to use, a conflict
arises between the drivers ‘time-to-market’ and ‘cost price’. As the most profound conflict is

identified now, this can be input for step 2 and subsequently step 3. More detailed models (in
comparison with the simple estimates of cost price done earlier) would be very useful to deepen
the insight, which would support in making of this trade-off in the early design phase. From our
first simple models we concluded that for reasons of cost price we want as few processing nodes
as possible. However, a proper software design should still be feasible within a limited time span
(influencing time-to-market). Therefore, we created a Parallel Object Oriented Specification
Language (POOSL) model (Putten et al. 1997). With this modeling language and analysis
techniques, several possible architectures are evaluated and compared on their feasibility with
respect to timing requirements. Note that a part of the argumentation of a particular choice is
captured now in the specific models made. In another setting (or a different architecture) this can
be used to reevaluate the design choice. So some kind of “tracing” – as discussed in the
introduction – is kept.

The thread of reasoning of figure 3.2 was obtained by iterating one-and-a-half times through
the 5-step scheme of figure 3.1. As we will see, this is typical for the case at hand as the aim of
threads of reasoning in this setting is to select the in-depth models to be made. Normally more
iterations – for instance, continuing after the modeling step – are used to find the essential
tensions and conflicts.

4 Threads of reasoning for the case study
The structure that covers the most important threads and their relationships can be complicated
for the design of complex systems, like a high-volume copier/printer. In addition to the thread
presented previously, we will describe two other essential threads in the control of the paper
flow. In the figures below we will use the same interpretation of the visualization as in figure 3.2.

4.1 Example thread: stepper motors versus DC servo-motors
In this second example thread, the starting point is the use of stepper motors instead of DC servo-
motors for driving the pinches. The use of DC servo-motors is common for the printer
manufacturer and less experience is present with stepper motors.

To create insight (step 2), the use of stepper motors was related to the identified main design
drivers. It was easy to see that stepper motors relate to the cost price of the system, as the reason
to select them in the first place was the fact that they are cheap. DC servo-motors are more
expensive because of their need for (expensive) encoders and shorter lifetime. The use of stepper
motors also relates to the printing accuracy. The accuracy of a stepper motor is limited because
of various reasons, like its mechanical construction, cogging and overshoot (Freriks et al.
2005b). Because the stepper motors have to control the movement of the sheet, the sheet can
only be controlled with limited accuracy.

To see whether the aspects discussed above are really important, we need to deepen our
insight (step 3), in this case by quantifying the reasoning. The first aspect was the cost price. The
average price of a (low power) stepper motor does not differ that much from the average cost
price of a DC-motor. Both can be obtained (for large quantities) for typically less than 10 euros.
For both types of motors an electrical driver is required, which also costs about the same for a
stepper motor as for a DC-motor, i.e. circa 3 euros for low power applications. An encoder,
which is solely needed to control the DC-motor, cannot be obtained below 20 euros for high
resolution rotary encoders. This is the main reason why the use of stepper motors is preferred.

Another aspect that needs some quantification is the accuracy of the stepper motor. First
measurements reveal that this indeed is an important issue. Figure 4.1 shows a plot of position

against time of a stepper motor running at 1 rotation/sec. Four steps are visualized of a 200
steps/revolution motor. The dashed line (blue) corresponds to the reference position, the solid
line (red) to the actual measured position. The horizontal lines indicate the size of the four steps
that are visualized. Each step of the motor can be translated to a step-size in the order of 0.2 mm
of the paper. From the figure it can be seen that the inaccuracy in the motors position is about 1
step size, i.e. 0.2 mm. As the printing accuracy is defined at 1 mm, the paper needs to be
positioned with an accuracy well below 1 mm. The obtained value of 0.2 mm is therefore critical
and needs to be evaluated further. It is nevertheless hard to quantify the impact on the real
position of the sheet, because of load differences, the occurrence of slip and interactions between
two motors that are controlling the same sheet of paper for some period of time. Therefore, more
extensive models are needed.

Note that the above reasoning illustrates the typical back-of-the-envelope calculations that
quantify the reasoning.

Figure 4.1: Measurement result of stepper motor
Like in the first example thread, we broaden our insight by means of the how, what and why

questions (step 4). The first question could be how the motor should be controlled. The answer to
this question is that a frequency generator needs to be implemented as for every step of the rotor,
a drive pulse is needed. The follow-up question to this answer is how this frequency generator
could be implemented. This pinpoints the question whether to do this with dedicated hardware or
in software. Note that this question is a very common struggle nowadays in industry. It comes
down to the question whether cost price or accuracy and predictability is more important.
Normally, hardware implementations are more reliable and faster or more accurate, but increase
the cost price of the system.

The last step in this first iteration is the visualization of the thread. This is depicted in figure
4.2. We see that two important conflicts have been identified that need more attention. The first
one is the use of dedicated hardware for the frequency generator in relation to the use of few
components to reduce the cost price. The second conflict is identified between the limited
accuracy of stepper motors and the requirements on the control accuracy of the sheets.

PRINTING ACCURACY
Accurate paper movement

COST PRICE
Few components

Cheap components Stepper motors
Frequency
generator

Limited
accuracy

Generate in
software

Use dedicated
hardware

Sub driver
Choice

Conflict
Consequence

PRINTING ACCURACY
Accurate paper movement

COST PRICE
Few components

Cheap components Stepper motors
Frequency
generator

Limited
accuracy

Generate in
software

Use dedicated
hardware

Choice

Conflict
Consequence

Figure 4.2: Thread of the example of stepper motors

4.2 Example thread: time sliced versus event-driven architecture
During the design a time sliced architecture was proposed for the processing nodes, on which for
each node, multiple tasks are scheduled. The idea is that by assigning each task its own time
slice, the execution of different functions is temporally separated and task interference is thus
avoided. Therefore, software functions can be developed and tested separately while
guaranteeing that it will work after combining them on one processor if each task fits in a slice
and there are enough slices. The fact that this choice also has some important disadvantages,
makes it a good starting point for a new thread (step 1).

To create insight (step 2), we again relate the issue to the main design drivers. The main
reason for adapting the time sliced architecture is to shorten the time-to-market, as it enables
predictable and composable software design. Furthermore, we can make use of existing
knowledge from past experience of the printer manufacturer (since the time sliced architecture
has been applied in the past).

One of the disadvantages of using time slices is the inefficient use of available processing
power. Because each task gets a pre-determined part of the available processor time, tasks cannot
use the slack time of each other. To quantify the inefficiency of the time sliced scheduling in our
case (step 3), we created a simple spread-sheet model which shows the tasks, the expected
processor usage and the size of the slices. It also includes an estimation of the interrupts that can
occur. Because the interrupts can interrupt any task, a task can effectively take longer to execute
than its measured execution time (without interruption). To guarantee the composability of the
system, we have to take this interrupt overhead into account for every slice. It turned out that the
overhead of the interrupts in a time sliced approach is 20%, while if we replace the time sliced
approach by e.g. a rate monotonic scheduler, it becomes much less: 3%.

To broaden our insight (step 4), we could ask ourselves what the influence of the choice of
the time sliced architecture would be on the printing accuracy. From past experience, but also
from literature it is known that the time sliced architecture introduces a limited action-reaction
speed. As we need very tight paper-image synchronization for accurate printing, this choice does
influence the printing accuracy and therefore needs further in-depth investigation (via modeling).

Figure 4.3 visualizes this thread, together with the first two example threads. From the
analysis above, two conflicts are identified between the use of the time sliced architecture
(because of the main design drivers: time-to-market, cost price and printing accuracy).

4.3 Total overview
Figure 4.3 visualizes the three example threads of reasoning in one overview graph. It is
interesting to see how these conflicts relate to each other. One example is found in the printing
accuracy. The requirement of a high printing accuracy not only conflicts with the use of stepper
motors, but also with the use of a time sliced architecture.

With the global overview we have obtained a clear list of tension spots where multi-
disciplinary models will be made for deepening the insight (step 3). In figure 4.3, light grey
(yellow) boxes are added to indicate the models that have been made. These models give more
insight into the identified conflicts. As mentioned before, the threads of reasoning obtained here
originate from one-and-a-half cycles through the 5-step scheme to end up with the in-depth
models to be made. Although figure 4.3 originates from a limited set of starting issues and from
only one-and-a-half iterations, it already shows a quite complicated structure. Nevertheless, the

overview already captures the most important tensions in the design of the control architecture.

PRINTING ACCURACY

Tight paper-image synchronisation

Accurate image

Accurate paper movement

COST PRICE

Few components

Cheap components

Optimal use of
components

Stepper motors
Frequency
generator

Limited
accuracy

Generate in
software

Use dedicated
hardware

TIME-TO-MARKET Predictable
dev process

Re-use of
experience

No re-engineering
from labmodel to product

Time sliced
architecture

Separation of functions
on multiple nodes

Over-dimensioned
resources

Limited action-
reaction speed

Predictable and composable
SW behavior for integration

Time sliced
optimal scheduling

for event-based
environment

Steppermotor
model

Time sliced
architecture with

interrupts in POOSL

CPU-usage for
several

scenarios in Excel

POOSL: evaluate several
(distributed) architectures

Concurrent design of SW

Sub driver

Choice
Consequence

Conflict

Model

Figure 4.3: Global overview of several combined threads of reasoning.

4.4 Detailed models to obtain insight in conflicts
To deepen insight, especially at the tension spots in the design, specific models have been made.
Figure 4.3 shows the objects of study of the models in the yellow/light gray boxes.

To get more insight in the conflict explained in section 3.1 (the size and number of
processing nodes), a POOSL (Parallel Object Oriented Specification Language) model is created
(Putten et al. 1997). With this modeling language and the analysis techniques, several possible
architectures are evaluated and compared.

A second model was made in the language POOSL to analyze the processor load for the
scenario in which the time sliced architecture is ‘polluted’ with interrupts, necessary to make
optimal use of components. This is a more detailed model than the spread-sheet model described
in section 4.2. Both models can also be used to see what the consequences are when the
frequency generators for the stepper motors are implemented in software.

To make optimal use of the processors (and minimize the number of processors), a model
was made to calculate optimal schedules for tasks in a time sliced architecture (Baruah et al
1997).

A stepper motor model, created in Matlab/Simulink, was used to analyze the positioning
accuracy of stepper motors (Freriks et al. 2005b).

5 Conclusions
In this article the technique of threads of reasoning was applied to identify the most important
tensions and conflicts in an industrial case study. The case consists of the multi-disciplinary
design of the paper flow control in a high-volume copier/printer. Amongst other techniques, this
technique helps to bring structure in the typical chaos of uncertainty and the huge amount of
realization options present in early design phases.

Threads of reasoning is one of the techniques used in the (Boderc) design methodology that
aims at using multi-disciplinary models to predict system performance in an early design phase,
while respecting the business constraints of available man power and time-to-market. The
restriction in available design time (related to time-to-market and available man power) implies
that in-depth and often time-consuming modeling and analysis should be performed only for the
essential and critical issues. Threads of reasoning turn out to be – at least in the case of designing
the control architecture for a printer – an effective means to find these issues and to create
overview.

Combined with the in-depth models, threads of reasoning provides the system architect with
valuable insight that supports him in making the important design trade-offs and to reduce some
of the uncertainty in the early design phase. It results in a very concise picture with the important
tensions depicted explicitly. Especially, the combination with (multi-disciplinary) modeling leads
to a design process that becomes more explicit. It forces the designer to quantify choices by
replacing hand-waving with facts. This stimulates and focuses the discussion with the
consequence of a shorter time-to-market and a more predictable design process. Moreover, a part
of the argumentation of a particular design choice is captured now in the specific models made
and techniques used.

Threads of reasoning form an informal technique in which some generic patterns can be
observed. We captured the technique in an iterative procedure that consists of 5 steps. Of course,
variations are possible to this procedure. One choice is the use of different views or categories as
applied in this case study. Also the way the threads are formed can be different. One can for
instance first perform a lot of viewpoint hopping to get broad (but shallow) threads or first go
into depth within one view before changing viewpoint.

Based on the case study, the following suggestions for the use of threads of reasoning can be
given:

o Keep the number and the size of the threads limited by selecting the most important ones
to keep overview and not to drown in details. In our case study the entanglement was
much larger in a first instance of figure 4.3. Additional iterations were used to regain
focus and gave rise to figure 4.3 in its present form.

o Whether certain tensions are important, depends, amongst other things, also on the level
of the system design you are in. The higher the level, the less detail has to be taken into
account. Often though, some iterations will have to go quite deep in a short time to gather
some facts that influence design choices at a much higher level. It helps to quantify things
(even if the numbers might be uncertain in an early design phase) as it sharpens the
discussion and replaces 'gut-feeling' by facts. In particular, back-of-the-envelope
calculations, figures-of-merit and rules-of-thumb help to identify the essential tensions
and to discard the unimportant ones.

o In the reasoning process, fast exploration of the problem and solution space improves the
quality of the design decisions. It is important to sample specific facts and not to try to be

complete. The speed of iteration is much more important than the completeness of the
facts. Otherwise the risk is to get stuck within one particular aspect. It is often sufficient
to know the order of magnitude and the margin of error for the trade-off analysis. Be
aware that the iteration will quickly zoom in on the core design problems, which will
result in sufficient coverage of the issues anyway.

o It is essential to realize that such an exploration is highly concurrent; it is neither top-
down, nor bottom-up. It is typically viewpoint hopping and taking different perspectives
(views or categories) all the time.

We applied thread of reasoning to a relative simple case study, compared to for instance the
design of a complete aircraft. To abstract up to more complicated systems, one can apply thread
of reasoning recursively along various axes of decomposition. In the example of an airplane, one
could start with applying threads of reasoning to the overall design, restricting oneself in not
taking too much detail into account. Separate threads can then be created of the various
decomposed parts of the airplane, like the motors and the navigation instruments. In the example
of the copier, we could have created a separate thread of the image processing and corresponding
hardware.

An open question still is how to learn the “skill” of threads of reasoning. Being able to iterate
fast through the design space and views seems to be hard, and tends to be driven by experience.
Making the trade-offs in little time seems to be a skill that you can only learn by doing it.
However, the guidelines given in this article and the presented examples in the case study
provide a first step for learning it.

References
Alexander, I., "Towards automatic traceability in industrial practice." Proceedings of the First

International Workshop on Traceability, Edinburgh, Sep 2002, pp 26-31.
Altshuller, G., "The innovation algorithm. TRIZ, systematic innovation and technical creativity."

Technical innovation center, Worchester, Massachusetts, 2000, online: http://www.triz.org.
Baruah, S., D. Chen, A. Mok., "Jitter concerns in periodic task systems." Proceedings of the

Eighteenth Real-Time Systems Symposium, pages 68-77, San Francisco, CA, Dec 1997.
Bayer, J, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, J.M. DeBaud,

"PuLSE: A methodology to develop software product lines." Proceedings of the symposium
on software reusability, pp: 122-131, 1999.

Cockburn, A., Writing effective use cases. Addison-Wesley, 2000.
Embedded Systems Institute., "Summary of the Boderc project plan." 2003. Online:

http://www.esi.nl.
Freriks, H.J.M., W.P.M.H. Heemels, G.J. Muller., "On the systematic use of budget-based

design." Proceedings of 16th annual international symposioum of the INCOSE, 2005a.
Freriks, H.J.M., "White paper on designing with stepper motors." 2005b. Online:

http://www.esi.nl.
Heemels, W.P.M.H., E. v.d. Waal, G.J. Muller., "A multi-disciplinary and model-based design

methodology for high-tech systems." Proceedings of CSER, 2006.
INCOSE Technical Board. "Systems engineering handbook. A “what to” guide for all se

practitioners." 2004.
Jazayeri, M., A. Ran, F. vd Linden., "Software architecture for product families." Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, 2000.
Malan, R., D. Bredemeyer., "Software architecture action guide." 2005, Online:

http://www.esi.nl/
http://www.esi.nl/
http://www.triz.org/

http://www.bredemeyer.com.
Muller, G.J.' "CAFCR: A multi-view method for embedded systems architecting; balancing

genericity and specificity." Ph.D. thesis, Delft university of technology, 2004.
Putten, P.H.A. van der, J.P.M. Voeten. "Specification of reactive hardware/software systems -

The method software/hardware engineering." Ph.D. thesis, Eindhoven University of
Technology, Eindhoven, 1997.

ReVelle, J.B. "The QFD handbook." Wiley, 1998.
Wieringa, R., "Requirements engineering: problem analysis and solution specification." ICWE,

pp: 13-16, 2004.

Acknowledgement
We thank the Boderc team, and in particular Paul van den Bosch, Maarten Steinbuch, Lou

Somers, Roelof Hamberg, Hennie Freriks, Berry van der Wijst, Anget Mestrom, Oana Florescu
and Eric Gaal for their contributions and stimulating discussion.

Biography
Heico Sandee is currently a Ph.D. student in the Control Systems group at the department of
Electrical Engineering of the Eindhoven University of Technology (TU/e). He received his
M.Sc. degree in Electrical Engineering from the TU/e, in 2002. In 2005 he visited for three
months the Mechanical Systems Control Laboratory at UC Berkeley, California. His main
research interest is the multi-disciplinary design of embedded dynamical systems, with real-time
control applications as the main focus.

Maurice Heemels received his M.Sc. degree (with honors) in mathematics and the Ph.D. degree
(cum laude) in hybrid systems theory of the TU/e, The Netherlands in 1995 and 1999,
respectively. From 2000 until 2004 he has been working as an assistant professor in the control
systems group (Electrical Engineering, TU/e). In June 2004 he moved to the Embedded Systems
Institute. He spent three months as a visiting professor within the ETH in Zurich, Switzerland in
2001 and a same period within Océ Technologies in Venlo, The Netherlands in 2004. His
research interest include modeling, analysis and control of hybrid systems and their application
to industrial design problems for high-tech systems.

Peter van den Bosch received his M.Sc. degree in Electrical Engineering from the TU/e, in
2001. Since 2002, he is a researcher at the research department of Océ Technologies BV. Since
2003, he is working on the Boderc project at the Embedded Systems Institute in Eindhoven.

Gerrit Muller received his Master’s degree in Physics from the University of Amsterdam in
1979. He worked from 1980 until 1997 at Philips Medical Systems as system architect. From
1997 to 1999 he was manager System Engineering at ASML. From 1999 - 2002 he worked at
Philips Research. Since 2003 he is working as senior research fellow at ESI (Embedded Systems
Institute). In June 2004 he received his doctorate. The main focus of his work at ESI is to work
on System Architecture methods and to enable education of new System Architects.
http://www.extra.research.philips.com/natlab/sysarch/

Marcel Verhoef works as a consultant for Chess, Haarlem, The Netherlands. He represents
Chess in the Boderc research project at the Embedded Systems Institute. He currently holds a
PhD position at the Radboud Universiteit Nijmegen, Institute for Computer and Information
Sciences. He holds an MSc from Technical University of Delft (1993).

http://www.extra.research.philips.com/natlab/sysarch/
http://www.bredemeyer.com/

	1	Introduction
	2	Printer design context and problem formulation
	2.1 Research topic
	2.2 Industrial case description

	3	Threads of reasoning
	3.1 Overview of threads of reasoning

	4	Threads of reasoning for the case study
	4.1 Example thread: stepper motors versus DC servo-motors
	4.2 Example thread: time sliced versus event-driven architecture
	4.3 Total overview
	4.4 Detailed models to obtain insight in conflicts

	5	Conclusions
	References
	Acknowledgement
	Biography

