

Modeling of hardware software performance
of high-tech systems

Peter van den Bosch
Océ Technologies B.V.
Venlo, The Netherlands

peter.vandenbosch@oce.com

Gerrit Muller
Embedded Systems Institute
Eindhoven, The Netherlands

Gerrit.Muller@esi.nl

Marcel Verhoef
Chess B.V.

Haarlem, The Netherlands
Marcel.Verhoef@chess.nl

Oana Florescu

Technical University Eindhoven
Eindhoven, The Netherlands

O.Florescu@tue.nl

Copyright © 2007 by the authors. Published and used by INCOSE with permission.

This work has been carried out as part of the Boderc project under the responsibility of the Embedded Systems Institute. This project is
partially supported by the Dutch Ministry of Economic Affairs under the Senter TS program

Abstract
The performance of the control system is an important aspect of a machine. It would be a

waste if a high-tech machine has been build such that it can physically achieve a high
throughput, for example printed sheets of paper, but is limited because the software controlling it
cannot keep up. Unfortunately, with current techniques it is hard to “predict” beforehand what
the performance of the software will be when it finally runs in the real system on the real
processor(s). There are two (extreme) ways to deal with it:

1. Over-dimension the hardware platform to make sure the software will run.
2. Implement the software, then run and evaluate its performance on the target hardware

platform. Then use this information in the next design cycle.
The disadvantages of both approaches are clear. In the first situation the cost price of the

entire system will surely be higher than necessary. In the second case, the design time is
increased dramatically because more design cycles are needed. Therefore, it is important to strive
to a development method that leads to fast design cycles for software performance, while having
an accurate enough prediction. In this paper we will discuss a pragmatic modeling approach to
design for performance in the domain of software intensive systems.

Problem formulation
As explained, the goal is to find or develop methods, techniques and tools that make it

possible to predict the performance of software accurately based on only a small model that does
not need a lot work to come up with. Obviously, there is a tension between the accuracy of the
performance prediction and the amount of work needed to make the model. In general, it is even
likely (but not proven) that it will require more work to make an exact prediction of the
performance than it would be to create the whole system, run it and see how it performs.

During the process of performance modeling, and also during other Boderc activities, we
realized that the goal of creating a model is not only to do an analysis and to make a prediction.
Probably more important is the understanding that is obtained by creating the model, see also
(Kostelijk 2005). This understanding leads to the ability to make better design choices and to be

able to understand the influences faster, thus decreasing the design cycle time.
Summarizing, the aim of this work is “A model of the performance characteristics of a

control system that increases the understanding of the relations between hardware and software
parameters, such that in early design stages enough confidence is gained to be able to iterate
through the design choices with a short cycle-time.”

Modeling approach
In this chapter an approach is presented to make a model according to the aim mentioned

before. Although there are techniques, like the ones presented in (Florescu 2006) and (Verhoef
2006), that enable analysis and prediction of the performance of a system before its actual
realization, they are not largely used in industry because of their conservativeness or problems to
scale with the dimension of the system. Each method makes a trade-off between the time spend
to make such a model and the accuracy of the results. Many things influence the performance of
a system. In figure 8.1 an overview is provided of typical factors that determine the performance.
Four layers are considered:

The lowest level is the hardware platform that influences the performance through processor
speed, bandwidth and access latency. The efficiency at which it can make use of the memory
bandwidth is increased by a memory cache. However, this makes the performance less
predictable and more dependent on what exactly runs on the processor.

The next layer is typically the operating system, including a scheduler, which takes care of
resource sharing by handling task switches and interrupts, and can provide advanced inter-
process communication. Then there might be another layer, the middleware or services that
typically provides services and abstractions. The top-layer is the application itself. This
application might be modeled entirely with the help of the middleware layer, but usually also
contains direct RTOS calls and might directly access the hardware.

computing hardware
(ARM9 SoC)

operating system
(VxWorks)

Middleware
(RoseRT)

application
(embedded control)

#messages
used abstractions

code size
data size

latency
bandwidth
efficiency

#interrupts
#task switches
#system calls

tools

locality
density
overhead

CPU
memory
buses
caches

scheduler
interrupt handler
IPC
services

messages
code generation

functions

code generator
compiler
linker

Figure 1. Important layers when considering software performance.

The performance of the entire system depends on how the higher levels use the lower levels.
On the vertical bar in Figure 1 the tools are mentioned, like compilers and linkers but also code
generators of the middleware that can have a huge influence on the performance.

The modeling approach is to consider these layers and to characterize the important aspects

of all these layers with quantifiable parameters. Ideally, the model will be a formula in which the
performance (execution time) of the application is expressed as a function of the middleware,
RTOS and hardware parameters. The middleware again can be expressed as a function of the
RTOS and hardware and the RTOS as a function of the hardware alone. Unfortunately, some
characteristics on the lower levels are dependent on the higher levels. For example, the efficiency
of a processor is boosted by the use of caches, but the higher levels and tools determine what the
influence of the cache will be. Despite it is hard or impossible to estimate these influences
accurately, it will be shown that it is possible to create useful insights in the performance.

The case under study
In the next paragraphs, the embedded control software of a printer / copier will be taken as a

study object; it will be used for measurements and modeling. The embedded control consists of
roughly two parts: a hard real-time part and a soft real-time part. The hard real-time part is the
lower level that takes care of things like motor controllers, heater controller, and paper transport;
it directly interacts with the environment. The higher layer (soft real-time) is in charge of
planning: it receives requests to print or scan one or multiple pages and then makes a detailed
planning for these sheets. The planning considers the availability of all functions, like paper path,
finisher and printing process.

user user interface
network

job
controller

request to
print/scan a
number of
pages

embedded
control

actuators

sensors

physical
machine

Figure 2. Positioning the embedded control in the printer.

Once this planning or allocation is ready, it is communicated to the lower level control,
which will execute it and report back on success or error conditions.

In our case study, the control software runs on a microprocessor (ARM9) on which the
VxWorks operating systems is also running. The aforementioned hard real-time tasks are all
executed in a periodical task that is called every 2 ms.. This task has a high priority to make sure
its behavior is very predictable. The other tasks (like allocation, error handling etc) run as
VxWorks threads with lower priority. Most of the control software is generated from RoseRT
and uses an extra abstraction layer, the RoseRT runtime sys tem. This runtime system (RTS)
includes a mechanism to handle messages between capsules (objects) and handles the execution
of state machines that are part of the capsules. The RTS and the application can be spread over
multiple threads (each capsule has its own thread) or combined in one.

So, when the system is running, the hard real-time task will interrupt the other tasks every 2
ms and run until completion (of course much less time than 2 ms). The other tasks will only run
in the processor time that is left, and typically take longer to finish.

Characterization of the layers
As proposed, the model will be a function that relates the performance of the application to

the other layers. For each layer it is possible to measure or calculate a few characteristics. These
characteristics can be used to evaluate the performance of the control software as a whole.

CPU
(core)

instruction
cache

data cache

200MHz 8kB

AHB
(bus)

SDRAM
controller

SDRAM
memory

100MHz 100MHz100MHz

Figure 3. Simplified structure of the SoC showing parts relevant for code execution.

Characterization of the hardware platform. Figure 3 shows the architecture of the chosen
system-on-chip (SoC) with ARM9 core. The CPU core runs at a maximum speed of 200 MIPS
(Million Instructions Per Second), but because the latency and bandwidth of the memory is much
slower this speed will only be reached when all instructions and data are in cache. The system
has a two-level memory hierarchy, with a level-1 instruction and data cache and external
SDRAM. The cache has 8 words per cache line and 4 sets of 64 cache lines each, resulting in
8kB for instruction and data cache separately. The SDRAM memory and controller have a
maximum bandwidth of 100 MHz. Figure 8.4 distinguishes external and internal latencies.
Internal latencies are between the CPU core and the SDRAM controller, external latencies are
between SDRAM controller and the external memory.

Figure 4. The time for fetching an instruction varies depending on

cache setting and availability in cache.
In the case of a cache miss, whole cache lines are fetched at once, which leads to an

additional transfer time from memory of 8 memory clock cycles. The CPU-core includes a five
stage execution pipeline, the third stage is the execution stage.

Equation 1 is a simple formula for the time it takes to execute a piece of code.
Texec = Ni * Tcpu * CPI (1)

Where:
Ni Number of instructions in piece of code
Tcpu One CPU cycle 1/fclk
CPI Average cycles per instruction.
The formula can be further refined by specifying the average CPI more accurately. When

instructions and data are available in the cache, the CPI of that instruction will be equal to the
one specified in the datasheet of the CPU. Depending on the instruction, it will take 1 to 3 CPU
cycles. A branch, for example, typically takes 3 clock ticks because the contents of the pipeline
becomes invalid. When the cache does not contain either the instruction or the data (or both), the
CPU will be stalled until it is available. Fetching from memory is slower, because the memory

bus is slower, with a factor Ndiv, than the CPU clock. Accessing the memory results in an
additional latency; this latency includes amongst others the so-called CAS-latency and is in total
Nlat memory cycles. Formula 1 can be refined by splitting the instructions, Ni, in instructions that
are in cache, Nfast, and instructions that are not in cache, Nslow.

Texec = Nfast * Tcpu * CPI + Nslow * Tmem * (Nlat + Npenalty) (2)
Where:
Tmem One Memory cycle Tmem = Tcpu * Ndiv
Ndiv Factor between memory and CPU speed

cache setting measured time [CPU cycles]
normal 815 to 3.9k
flushed 3.9k
off 18k

Table 1: Measured exectution time for 800 NOPs with different cache settings.
The penalty time, Npenalty, will be explained later on. In order to measure those (combinations

of) latencies, 800 individual instructions (eg NOPs) are executed multiple times. This program
can be run with different settings of the cache. When the cache is on, eventually all instructions
will hit in the cache. This results in a hit rate of 100 %. When the cache is flushed before the
execution of the program, all the instructions have to be fetched again (8 at a time, so 100
fetches) from memory. Effectively, this results in a hit rate of 87.5 %. When the cache is
disabled, it needs to fetch all instructions (800 times) from the memory separately. This
corresponds with a hit rate of 0 %. The resulting execution times for the different situations are
measured and listed in Table 1.

Figure 5 shows how the instructions are fetched and executed for different settings of the
cache. It is shown that executing instructions is done parallel to transferring them from memory
to cache. When all fetches hit in the cache (1 in Figure 5), an instruction is executed every CPU
clock, there are no latencies. In the case that the fetch initially misses, the instruction is fetched
together with 7 other instructions (2). As soon as the first one is in the cache, it can be executed
(3), the latency is 23 CPU cycles. The next sequential instruction can only be executed when it is
transferred from memory that is why it is 1 memory clock cycle (2 CPU clocks) later. When the
next instruction results in a cache miss, it is still necessary to complete the transfer of all 8 words
before fetching of the next words takes place (4), in this case the effective latency adds up to 38
CPU cycles. In the case that the cache is disabled, a word is always fetched from memory before
it can be executed (5), the delay is always 23 CPU cycles.

From the measurements and equation 2, it follows that the latency, Nlat , is 23 CPU cycles (or
11 memory cycles). Npenalty is used to deal with the different effective latency in the case that not
everything is in cache. If the hit rate is 1/8, only one instruction is executed while 8 have been
fetched, the penalty in that case is 8 * Tmem - 1 * Tcpu. However, if the hit rate is 7/8, the penalty is
8 * Tmem - 7 * Tcpu, because those 7 CPU cycles were effectively used to execute 7 instructions in
parallel with transferring data from memory to cache. In general: Npenalty = 8 * Ndiv - 8 * HR, with
HR the hit rate.

Note that it depends largely on the type of instructions what the average CPI is. For example,
instructions are only executed efficiently if the code is sequential without branches. A branch
instruction flushes the pipeline and has to wait for the cache line to be filled entirely. For now,
the effect of the 5-stage pipeline is neglected: an instruction is assumed to be executed when it is
available.

Figure 5. Timing for fetching and executing instructions with caches disabled and

enabled.

Measurement method. For all the timing measurements, an on-chip timer has been used. This
timer has a resolution of 270 ns. From a few tests of reading the timer register, it has been
concluded that the accuracy of the timing method is 200 ns (40x 200MHz-cycles).

Assumptions. In order to simplify the formula, many assumptions were made. These
assumptions are important because if they do not hold or cannot be neglected, the formula does
not hold and needs adaptation. The most important assumptions are:

Extra latencies caused by the SDRAM are deemed irrelevant. For example switching banks
in the memory chips results in higher latencies, but data and code have their own memory banks,
and most code is assumed to be very local, reducing jumps over bank boundaries and over
SDRAM rows that are 256 words long.

The pipeline of the CPU does not stall, this means no branches (sequential code) and no
instructions that have to wait for each others data. When this is not the case, the average CPI will
increase, but also the penalty will be different.

Characterization of the RTOS
The RTOS, VxWorks, provides a scheduler that activates and deactivates tasks based on their

priority. The scheduler is invoked periodically by a timer and sometimes by tasks through system
calls like suspend and semTake. Every time the scheduler is invoked, it has to determine which
task to run next and this involves context switching: store the state of the previous task and load
the state of the new task. Typically, a profiler like WindView does not show this overhead: it
only shows when a task “ends” and apparently the next task immediately starts. With two tasks,
like in Figure 7, it is possible to measure the task switching time. Figure 6 shows this
graphically: two tasks exist that both run periodically, the timer is read before the suspension of

task1 and after the suspension of task2, which runs at a lower priority. As soon as the main task
suspends, task 1 will resume, the cache flush is performed, the timer is read and task 1 is
suspended, after which the previously suspended task 2 resumes.

Figure 8.6: To measure the task switching time, we use two tasks that execute

sequentially with a cache flush before the switch. The results of the measurements are
shown in Table 2. Typically a task-switch will take between 1.6 (best-case) to 20 (worst-
case) µs, when caches are enabled and depending on whether the code between the

task-switches messes up the cache a lot.
According to Table 2, a task switch with cache disabled takes 10k CPU cycles. 10k divided

by 23 cycles per instruction (see Figure 5) is 430 fetches, both instructions and data. Best case
320 CPU cycles are needed, which means that it mostly runs from cache!

Figure 8.7: Example of code used for measuring the task switching time.

cache settings Tsw
 [CPU cycles] [µs]
normal 320 to 1.6k 1.6 to 8
flushed 2.8k to 4.0k 14 to 20
off 9.4k to 10k 47 to 51

Table 2: Measured task switch time for different cache settings.

Caching effects by context switching. When a task is interrupted by another task, the current
content of the cache is typically worthless: different code will be executed. First the scheduler of
the RTOS and then the next scheduled task will be executed by the processor; the cache needs to
be “refilled” with relevant contents. Knowing the size of the cache it is possible to estimate the
worst-case effect. At most 256 cache lines must be refilled, which gives an overhead of 39 CPU
cycles per line: 256*39*5 ns = 50 µs. Therefore, it can be argued that penalty caused by the pre-
emption of a task is 50 µs.

Characterization of the middleware: RoseRT
Approximately the same measurement as done for VxWorks with the context switch can be

done for RoseRT. Instead of tasks, capsules are considered that send a message (an integer) to
each other, see Figure 8. Before sending the message with
messageOut.signal1(0).send() and after receiving it with MessageIn , a timestamp
is taken.

Figure 8.8: Two capsules that send messages to each other.

The scheduling of capsules and messages is done by the RoseRT runtime sys tem, which is
linked together with the application code. It can be chosen to make a physical RTOS thread for
each capsule, or to map them both on the same physical thread. Depending on this choice, the
overhead is different, as shown in Table 3.

Physical threads Cache Latency
one normal [6, 37] µs
 flushed [33,43] µs
separate normal [28, 67] µs
 flushed [82, 98] µs

Table 3: “Overhead” of sending a message between capsules in different
configurations.

Characterization of the application
Formula 2 can be refined more by taking the hit rates of the caches into account, as in

formula 3. Npenalty has been replaced by its value depending on the hit rate.
Ni*((19*Tmem -8 *Tcpu*(1 - MRi))*MRi+CPI*Tcpu* (1 - MRi))+Nd *((19*Tmem - 8* Tcpu*(1-MRd))*MRd)
(3)
Where:

Ni number of instruction fetches
Nd number of data fetches
Tmem memory clock cycle time
Tcpu CPU clock cycle time
MRi cache miss rate for instructions
MRd cache miss rate for data
Therefore, a piece of code (program) can be characterized by values for MRi, MRd , Ni , Nd ,

and CPI. The values for Tmem and Tcpu are hardware characteristics. For an existing application,
the cache miss rate can be measured by executing the code and measure the execution time with
caches enabled and again with caches disabled for both data and instruction cache separately.
That will result in 3 measurements, obtaining 3 equations for the parameters. Unfortunately,
there are 5 independent variables. However, it is possible to determine the set of possible
solutions.

The measurements for three cache settings were performed for a part of the soft real-time
control code. After analysis, it turns out that there are 3 - 5 more instruction fetches than data

fetches. Furthermore, the miss rate for instructions is between 0 and 5 % and for data between 0
and 18 %. Figure 9 shows the relation for different values of the CPI. The values near to 0 % can
be confidently neglected, so probably the values will be around 3%miss rate (Ni = 7.7M) for
instruction fetches and a data cache miss rate of 10 % (Nd = 1.8M).

Usage of RTOS and middleware . The overhead of the RTOS is mainly due to task switches;
during a task switch, the scheduling function is executed. There are at least two task switches
every 2 ms because of the hard real-time task. Furthermore there are several other tasks, typically
leading to 1500 task switches per second. This number hardly depends on the printing speed. The
reason is that after the periodic task always another task is called. One task switch takes worst
case 20 µs, the overhead by task switches is therefore at most 1500 * 20 = 30 ms per second, or
3%.

Figure 8.9: Miss rates of data and instruction cache as function of each other, actual

 value must be on this line, all based on measurements.
The overhead of the middleware is characterized in terms of message overhead. The amount

of messages during a print job was measured (typically, this can be done on the target platform if
available, but just as well on a simulation on the host). The number of RoseRT-messages per
page is 210. Of these messages, 120 are internal in a thread and 90 are between threads, causing
extra overhead. With the help of table 8.3, the maximum overhead caused by the messages is
calculated to be 120 * 43 + 90 * 98 = 14 ms per page. Suppose the printer has a speed of 60
pages per minute, then the overhead is at most 1.4 %.

Additional influence of cache . As explained earlier, due to task switches, the cache is spoiled
which makes the interrupted task less efficient. In this system, an interrupt occurs every 2 ms,
flushing the cache. When a cache is spoiled, it will take at most 50 µs to refill all cache lines and

make the interrupted task run at full speed again. In this case, the harm done by this flushing is
therefore at most 500 * 50 = 25 ms per second, thus 2.5 % CPU time. This is the effect of
periodic interruption on the soft real-time tasks.

Speed cpu,mem Estimated time Measured time
 (CPI=1.0) (CPI=1.5)
200,100 107 ms 107 ms 108 ms
100,100 137 ms 161 ms 159 ms
200,50 184 ms 160 ms 178 ms
180,60 162 ms 148 ms -
160,80 134 ms 134 ms -

Table 4: Predicted and measured execution time at different clock speed
configurations.

Validation
In the previous section, Formula 3 was shown that claims to predict the execution time of an

application based on a few measurements on the bare level. With these characterizations, the
effect of changing hardware parameters can be estimated. It has been shown already that the
effects of task switches and messages can be neglected, although the effect of the parameter
changes can also be calculated for them. The effects of four additional hardware platforms are
considered (see table 4): the same SoC but with other clock rates for CPU and memory. For two
configurations, the measurements are also done for validation. For the configurations of 180
MHz CPU and 60 MHz memory bus, and 160 MHz CPU and 80 MHz memory bus, no
validation is done, only a prediction. The latencies of the memories are kept the same number of
clock ticks for all configurat ions. Table 4 shows the measurement results and the corresponding
predictions from Equation 3.

It is clear that the correctness of the answer depends highly on the CPI. During the previous
analysis, a method to correctly estimate the CPI has not been considered, but it turns out to be
very relevant for the prediction of the execution time.

Conclusions
In the problem formulation we stated that we wanted to come up with a simple model to

estimate the performance of the embedded control software. In the following sections some
formulas and measurements have been given. As was already said in the problem statement, one
of the most important aspects of making a model or a formula, is the insight gained from the
formulation. Making a model forces the engineer to be explicit and to quantify and measure
relevant aspects, like for example the number of task switches. This is exactly what can be
concluded from the case study: insight was gained, but a simple formula that can accurately
predict performance on a chosen platforms not yet available. Additionally, the following is
concluded:
• A method has been proposed to create a model to estimate the performance of an embedded

software application. It is proposed to do simple measurements at each layer. In the
particular case, the overhead that can be expected by RTOS and middleware is limited, it is
only a few percent. When going to a higher printing speed, only the middleware introduces
additional overhead, but it will only become significant at very high printing speeds.

• The method to link application performance to hardware characteristics does provide a lot of

insight in the processor workings. It also gives insight in estimates of characteristics of the
application, like cache miss rates and number of instructions. However, the validation shows
that especially the CPI is a crucial parameter that has not been addressed thoroughly enough
yet.

• In this particular case it has been shown that the overhead introduced by using messages of
RoseRT is not very much, approximately 2 % of the total. The same argument holds for the
time “lost” in context switches. However, in new cases these aspects must definitely be
measured and calculated again, it is the only way to be sure.

Furthermore, we like to make the following remarks and recommendations:
• When moving to another platform than the current ARM9, the application itself is not going

to change much. However, the execution times will differ. Take for example a Pentium
processor. The execution speed of the core is much higher than of the ARM, a factor 10, 2
GHz instead of 200 MHz. The memory bus is typically faster with respect to possible
sustained throughput, typically 400 MHz. However, the latency of the memory is not less, it
might be even more because of the complexity of a Pentium board, there is a bridge between
processor and memory, which will increase the latency. On the other hand, a Pentium has a
large L2 (even L3 cache) in which very large parts of the code can reside. The chance that
these caches have a miss are very small. Anyway, what needs to be done are the micro-
measurements, to get a feeling for the latencies and speeds of the processor board. The effect
of the different caches has to be measured and taken into account, this means that it is
necessary to estimate the cache misses for all three caching levels.

• There are numerous “details” that influence the execution time of a piece of code. Some of
them are parameters of the formulas and can be varied to study the effects. But other things
like compiler flags are not in the formulas, but they do influence the execution time. It is
important to carefully keep track of all of them, to make them explicit. It would be a good
idea to generate a list of relevant parameters to consider. An engineer can then take this list
and pick the relevant items for his particular problem.

• Even if information about latencies and bandwidths is available in datasheets or given by
another designer, it is worthwhile to do a few measurements. This will give a better
“feeling” and forces to validate the implicit model.

References
Ton Kostelijk. “Misleading Architecting Tradeoffs”, IEEE Computer, pp. 20 - 26 , May 2005.
Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. “Modeling and validating distributed

embedded real-time systems with VDM++”. In J. Misra, T. Nipkow, and E. Sekerinski,
editors, Proc. Formal Methods 2006, volume 4085 of LNCS, pages 147–162. Formal
Methods Europe, Springer, 2006.

Oana Florescu, Menno de Hoon, Jeroen Voeten, and Henk Corporaal. “Probabilistic modelling
and evaluation of soft real-time embedded systems”. In Proceedings of the Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS VI) , LNCS 4017,
pages 206–215, July 2006.

Author Biography

Peter van den Bosch received his M.Sc. degree in Electrical
Engineering from the TU/e (Technische Universiteit Eindhoven, The
Netherlands), in 2001. Since 2002, he is a researcher at the research
department of Océ Technologies BV. From 2003-2006, he has been
working on the Boderc project in collaboration with the Embedded
Systems Institute in Eindhoven.

Marcel Verhoef studied computer science at Delft University of
Technology in the Netherlands (MSc, 1993), in the area of
computer languages and compilers. He has worked in industry for
most of his career. He works for Chess since 1998. He has worked
as a systems architect for clients such as the European Space
Agency, the Dutch department of Defense, Siemens VDO
Automotive, Océ Technologies and Philips. In several of these
projects, he applied formal methods. He represents Chess in the
BODERC project at the Embedded Systems Institute. He is due to
defend his PhD in 2007.

Oana Florescu received her M.Sc. degree in Computer Science
and Engineering from the "Politehnica" University of Bucharest,
Romania, in 2003. Following a six-month internship at Motorola
DSP R&D Center Romania, in September 2002, in parallel with
her studies, she has started working within their compilers team.
A year later, Oana joined the Electrical Engineering Department
from the Eindhoven University of Technology for her PhD
studies. The focus of her research was on the predictable design of
real-time systems within the Boderc project coordinated by the
Embedded Systems Ins titute. During her PhD studies, in the
summer of 2006, she went for a three-month internship at IBM

Research Laboratory in Zürich, Switzerland. She is due to defend her PhD in 2007.

Peter van den Bosch

Marcel Verhoef

Oana Florescu

Gerrit Muller received his Master’s degree in Physics from the
University of Amsterdam in 1979. He worked from 1980 until 1997 at
Philips Medical Systems as system architect. From 1997 to 1999 he
was manager System Engineering at ASML. From 1999 - 2002 he
worked at Philips Research. Since 2003 he is working as senior
research fellow at ESI (Embedded Systems Institute). In June 2004 he
received his doctorate. The main focus of his work at ESI is on System
Architecture methods and on education of future System Architects.
Special areas of interest are: Ways to cope with the exponential growth
of size and complexity of systems. Examples of methods to address the
growing complexity are product lines and composable architectures.
The human aspects of systems architecting (which in itself is a crucial
factor in coping with the above mentioned growth). All information
(System Architecture articles, course material, curriculum vitae) can be

found at: Gaudí systems architecting http://www.gaudisite.nl/

Gerrit Muller

